29 research outputs found

    ヨウリョクタイガタ フェレドキシン ノ コウゾウ カイセキ 2.8Å ブンカイノウ

    Get PDF
    Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O.Motojima et al., Nucl. Fusion 47 (2007) S668). The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0 x 10^21 m^-3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2 x 10^19m^-3, which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper

    Effects of plasma turbulence on the nonlinear evolution of magnetic island in tokamak

    Get PDF
    Magnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution

    Flexibility of LHD Configuration with Multi-Layer Helical Coils

    Get PDF
    The Large Helical Device (LHD) is a heliotron device with two helical coils, each of which has a structure of three current layers. It is designed so that the current in each layer should be controlled independently. By changing the combination of the coil current in the layers, it is possible to vary the effective minor radius of the helical coils, which enlarges the flexibility of the configuration. The properties of the plasmas for several combinations of the layers are investigated numerically. In the vacuum configuration, it is obtained that the combination of the layers corresponding to a large effective coil radius has a large outermost surface. In this case, the rotational transform decreases and the magnetic hill is reduced compared with the configuration with all three layers. The large Shafranov shift which is due to the small rotational transform enhances the magnetic well and the magnetic shear to stabilize the Mercier mode, however, it degrades the equilibrium beta limit. In the case of the combination for a small effective coil radius, the Mercier mode is destabilized, because the magnetic hill is enhanced. The effect on the bootstrap current is also studied
    corecore