56 research outputs found

    Magnetoelastic mechanism of spin-reorientation transitions at step-edges

    Full text link
    The symmetry-induced magnetic anisotropy due to monoatomic steps at strained Ni films is determined using results of first - principles relativistic full-potential linearized augmented plane wave (FLAPW) calculations and an analogy with the N\'eel model. We show that there is a magnetoelastic anisotropy contribution to the uniaxial magnetic anisotropy energy in the vicinal plane of a stepped surface. In addition to the known spin-direction reorientation transition at a flat Ni/Cu(001) surface, we propose a spin-direction reorientation transition in the vicinal plane for a stepped Ni/Cu surface due to the magnetoelastic anisotropy. We show that with an increase of Ni film thickness, the magnetization in the vicinal plane turns perpendicular to the step edge at a critical thickness calculated to be in the range of 16-24 Ni layers for the Ni/Cu(1,1,13) stepped surface.Comment: Accepted for publication in Phys. Rev.

    Quantum Monte Carlo simulation of thin magnetic films

    Full text link
    The stochastic series expansion quantum Monte Carlo method is used to study thin ferromagnetic films, described by a Heisenberg model including local anisotropies. The magnetization curve is calculated, and the results compared to Schwinger boson and many-body Green's function calculations. A transverse field is introduced in order to study the reorientation effect, in which the magnetization changes from out-of-plane to in-plane. Since the approximate theoretical approaches above differ significantly from each other, and the Monte Carlo method is free of systematic errors, the calculation provides an unbiased check of the approximate treatments. By studying quantum spin models with local anisotropies, varying spin size, and a transverse field, we also demonstrate the general applicability of the recent cluster-loop formulation of the stochastic series expansion quantum Monte Carlo method.Comment: 9 pages, 12 figure

    Step-induced unusual magnetic properties of ultrathin Co/Cu films: ab initio study

    Full text link
    We have performed ab initio studies to elucidate the unusual magnetic behavior recently observed in epitaxial Co films upon absorption of submonolayers of Cu and other materials. We find that a submonolayer amount of Cu on a stepped Co/Cu (100) film changes dramatically the electronic and magnetic structure of the system. The effect is mainly due to hybridization of Co and Cu dd-electrons when copper forms a ``wire'' next to a Co step at the surface. As a result, a non-collinear arrangement of magnetic moments (switching of the easy axis) is promoted. [PACS 75.70.Ak,75.70.-i]Comment: 10 pages, RevTeX 3.0, 4 PostScript figures available on request from A. Bratkovsky at [email protected]

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films

    Full text link
    The temperature-driven reorientation transition which, up to now, has been studied by use of Heisenberg-type models only, is investigated within an itinerant-electron model. We consider the Hubbard model for a thin fcc(100) film together with the dipole interaction and a layer-dependent anisotropy field. The isotropic part of the model is treated by use of a generalization of the spectral-density approach to the film geometry. The magnetic properties of the film are investigated as a function of temperature and film thickness and are analyzed in detail with help of the spin- and layer-dependent quasiparticle density of states. By calculating the temperature dependence of the second-order anisotropy constants we find that both types of reorientation transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to out-of-plane (``Ni-type'') magnetization are possible within our model. In the latter case the inclusion of a positive volume anisotropy is vital. The reorientation transition is mediated by a strong reduction of the surface magnetization with respect to the inner layers as a function of temperature and is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres

    Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

    Get PDF
    Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits

    Systematic theoretical study of the spin and orbital magnetic moments of 4d and 5d interfaces with Fe films

    Full text link
    Results of ab initio calculations using the relativistic Local Spin Density theory are presented for the magnetic moments of periodic 5d and 4d transition metal interfaces with bcc Fe(001). In this systematic study we calculated the layer-resolved spin and orbital magnetic moments over the entire series. For the Fe/W(001) system, the Fe spin moment is reduced whilst its orbital moment is strongly enhanced. In the W layers a spin moment is induced, which is antiparallel to that of Fe in the first and fourth W layers but parallel to Fe in the second and third W layers. The W orbital moment does not follow the spin moment. It is aligned antiparallel to Fe in the first two W layers and changes sign in the third and fourth W layers. Therefore, Hund's third rule is violated in the first and third W layers, but not in the second and fourth W layers. The trend in the spin and orbital moments over the 4d and 5d series for multilayers is quite similar to previous impurity calculations. These observations strongly suggest that these effects can be seen as a consequence of the hybridization between 5d (4d) and Fe which is mostly due to band filling, and to a lesser extent geometrical effects of either single impurity or interface
    corecore