1,184 research outputs found

    Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review

    Get PDF
    Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research

    The speciation and genotyping of Cronobacter isolates from hospitalised patients

    Get PDF
    The World Health Organization (WHO) has recognised all Cronobacter species as human pathogens. Among premature neonates and immunocompromised infants, these infections can be life-threatening, with clinical presentations of septicaemia, meningitis and necrotising enterocolitis. The neurological sequelae can be permanent and the mortality rate as high as 40 – 80 %. Despite the highlighted issues of neonatal infections, the majority of Cronobacter infections are in the elderly population suffering from serious underlying disease or malignancy and include wound and urinary tract infections, osteomyelitis, bacteraemia and septicaemia. However, no age profiling studies have speciated or genotyped the Cronobacter isolates. A clinical collection of 51 Cronobacter strains from two hospitals were speciated and genotyped using 7-loci multilocus sequence typing (MLST), rpoB gene sequence analysis, O-antigen typing and pulsed- field gel electrophoresis (PFGE). The isolates were predominated by C. sakazakii sequence type 4 (63 %, 32/51) and C. malonaticus sequence type 7 (33 %, 17/51). These had been isolated from throat and sputum samples of all age groups, as well as recal and faecal swabs. There was no apparent relatedness between the age of the patient and the Cronobacter species isolated. Despite the high clonality of Cronobacter , PFGE profiles differentiated strains across the sequence types into 15 pulsotypes. There was almost complete agreement between O-antigen typing and rpoB gene sequence analysis and MLST profiling. This study shows the value of applying MLST to bacterial population studies with strains from two patient cohorts, combined with PFGE for further discrimination of strains

    Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels

    Get PDF
    Alginate hydrogels are versatile self-assembling biocompatible materials with diverse biomedical and food industrial applications, which includes uses in encapsulation, (drug) delivery and tissue engineering. Hydrogel formation requires cross-linking, which for alginates is often done with calcium ions that engage in specific interactions with the polysaccharide carboxylic acid groups. Water molecules also hydrate these alginate groups and fill macropores within the hydrogels, with implications for both mechanical properties and cargo encapsulation. Understanding these aspects of hydrogels requires the observation and characterization of the hydrogel waters, how they engage the alginate, and fill the macropores. Here we employed solid-state NMR (ssNMR) spectroscopy to detect and study water molecules in re-hydrated alginate hydrogels. 1H, 2H, and 13C magic angle spinning (MAS) NMR and relaxation measurements were combined to observe both water and alginate. Two different water phases were detected that vary upon gradual (re)hydration of the alginate hydrogels. These water pools differ in their chemical shifts and NMR relaxation properties, reflecting hydration waters directly associated with the carbohydrate polymers alongside dynamic waters in the macropores. Thus, the ssNMR detects the water-filled macropore water pools and how they vary upon calcium cross-linking. We also observe how calcium cross-linking selectively immobilizes the α-guluronate monosaccharides, but leaves the β-mannuronate units more flexible and prone to selective re-hydration. Thus, these ssNMR experiments can be used to probe cross-linking and hydration of alginate hydrogels, with implications for our understanding of design parameters that tune their performance in (drug) delivery and other food industrial applications

    A study on the characteristics of Algerian Hassi-Messaoud asphaltenes:Algerian Hassi-Messaoud asphaltenes: solubility and precipitation

    Get PDF
    This study focuses on detailed characterizations of asphaltene fractions extracted from the Algerian Hassi-Messaoud oil field. It was found that the extracted asphaltenes are not completely soluble in toluene, instead two fractions of asphaltenes were obtained upon solubilizing the heptane-precipitated neat asphaltenes in toluene. Extensive characterizations of the toluene-soluble and insoluble fractions were carried out using elemental analysis, Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (ssNMR). It was suggested that the high oxygen content and uneven compositional structures are the main contributors to asphaltene instability. The toluene-insoluble fractions were found to have higher polarity and aromaticity as well as more oxygen content than the neat asphaltenes and toluene-soluble fractions

    The Impact of Winter-Sown Chickpeas on Insect Pests and their Management

    Get PDF
    Recent research has shown that in and around Syria, winter-sown chickpea substantially outyields the spring-sown crops. It is expected that there will be a substantial adoption of this practice in farmers' fields in the near future. Any substantial change in the sowing date of a crop that is already well established in a traditional cropping system can bring about some changes in pest incidence, not only on that crop but alsoon other crops in the system. Although it is probable that winter.sown chickpea will suffer no greatcr pest attack than the spring-sown, it is possible that the introduction of a winter-sown crop might provide an earlier buildup of pests that will then disperse lo subsequent $pringsown crops including chickpea. Alternatively, a relatively unimporlant insect might become important either on the winter or succeeding crop, and so cause problems for the farmers

    Binder-free zeolite Beta beads with hierarchical porosity:Synthesis and application as heterogeneous catalysts for anisole acylation

    Get PDF
    Three zeolites (H-Beta, H-ZSM-5 and H-Y) were synthesized in the form of binder-free macroscopic beads (350-800 µm) using a hydrothermal method employing anion-exchange resin beads as hard template. The beads obtained after removal of the hard template by calcination consisted of crystalline zeolite domains connected with each other to form a hierarchical porous network in which the zeolitic micropores are accessible through meso- and macropores, as proven by characterization with XRD, N2 physisorption, SEM, and TEM. The composition, the nature and amount of acid sites and the degree of hydrophobicity of these beads were investigated by means of XRF, solid-state NMR, pyridine-FTIR and TGA. The zeolite beads were tested as heterogeneous catalysts in the Friedel-Crafts acylation of anisole with acetic anhydride to produce para-methoxyacetophenone. H-Beta-Beads displayed the best catalytic performance with 95% conversion of acetic anhydride and 76% yield of para-methoxyacetophenone in a batch reactor test (90 °C, 6 h). Next, the catalytic performance of H-Beta-Beads was compared in both batch and continuous-flow mode to extrudates prepared by mixing zeolite Beta powder with either kaolin or bentonite binders. H-Beta-Beads outperformed the extrudates in batch-mode reactions and could be reused in multiple runs without discernible loss of activity. In the continuous-flow test, H-Beta-Beads demonstrated higher average activity but deactivated more rapidly than the extrudates

    Insights into the Characterization of the Self-Assembly of Different Types of Amphiphilic Molecules Using Dynamic Light Scattering

    Get PDF
    The self-assembly of cetyltrimethylammonium bromide, sodium dodecylsulfate, Triton X-100, and sulfobetaine surfactants in aqueous solutions was examined by dynamic light scattering, both in the presence and absence of 0.1 M NaCl salt, across various temperatures. For each surfactant, critical parameters, such as concentration and phase transition temperatures, of micelles were determined by monitoring changes in the hydrodynamic diameter with concentration and temperature. Additionally, we explored the self-assembly behavior of these surfactants when they are introduced alongside polystyrene nanoparticles. Our findings enabled the elucidation of surfactant molecule adsorption mechanisms onto polystyrene nanoparticle surfaces. Furthermore, by analyzing variations in the z-average diameter and zeta potential, we were able to establish the Krafft point, a parameter that remains imperceptible when polystyrene nanoparticles are absent from the solution.</p

    Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports:Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate

    Get PDF
    Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.</p

    Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports:Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate

    Get PDF
    Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.</p

    Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports:Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate

    Get PDF
    Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.</p
    • …
    corecore