17,952 research outputs found
Quasiquarks in two stream system
We study the collective quark excitations in an extremely anisotropic system
of two interpenetrating streams of the quark-gluon plasma. In contrast to the
gluon modes, all quark ones appear to be stable in such a system. Even more,
the quark modes in the two-stream system are very similar to those in the
isotropic plasma.Comment: 4 pages, 2 figures, minor corrections, to appear in Phys. Rev.
Topological characteristics of oil and gas reservoirs and their applications
We demonstrate applications of topological characteristics of oil and gas
reservoirs considered as three-dimensional bodies to geological modeling.Comment: 12 page
Study of coupled states for the (4s^{2})^{1}S + (4s4p)^{3}P asymptote of Ca_{2}
The coupled states A^{1}\Sigma_{u}^{+} (^{1}D +}1}S), c^{3}\Pi_{u} (^{3}P +
^{1}S) and a^{3}\Sigma_{u}^{+} (^{3}P +}1}S) of the calcium dimer are
investigated in a laser induced fluorescence experiment combined with
high-resolution Fourier-transform spectroscopy. A global deperturbation
analysis of the observed levels, considering a model, which is complete within
the subspace of relevant neighboring states, is performed using the Fourier
Grid Hamiltonian method. We determine the potential energy curve of the
A^{1}\Sigma_{u}^{+} and c^{3}\Pi_{u} states and the strengths of the couplings
between them. The c^{3}\Pi_{u} and \as states are of particular importance for
the description of collisional processes between calcium atoms in the ground
state ^{1}S_{0} and excited state ^{3}P_{1} applied in studies for establishing
an optical frequency standard with Ca.Comment: 15 pages, 12 figure
Dynamical trapping and relaxation of scalar gravitational fields
We present a framework for nonlinearly coupled scalar-tensor theory of
gravity to address both inflation and core-collapse supernova problems. The
unified approach is based on a novel dynamical trapping and relaxation of
scalar gravity in highly energetic regimes. The new model provides a viable
alternative mechanism of inflation free from various issues known to affect
previous proposals. Furthermore, it could be related to observable violent
astronomical events, specifically by releasing a significant amount of
additional gravitational energy during core-collapse supernovae. A recent
experiment at CERN relevant for testing this new model is briefly outlined.Comment: 4 pages; version to appear in PL
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
Transmission of UV light with high beam quality and pointing stability is
desirable for many experiments in atomic, molecular and optical physics. In
particular, laser cooling and coherent manipulation of trapped ions with
transitions in the UV require stable, single-mode light delivery. Transmitting
even ~2 mW CW light at 280 nm through silica solid-core fibers has previously
been found to cause transmission degradation after just a few hours due to
optical damage. We show that photonic crystal fiber of the kagom\'e type can be
used for effectively single-mode transmission with acceptable loss and bending
sensitivity. No transmission degradation was observed even after >100 hours of
operation with 15 mW CW input power. In addition it is shown that
implementation of the fiber in a trapped ion experiment significantly increases
the coherence times of the internal state transfer due to an increase in beam
pointing stability
Influence of the Soret effect on convection of binary fluids
Convection in horizontal layers of binary fluids heated from below and in
particular the influence of the Soret effect on the bifurcation properties of
extended stationary and traveling patterns that occur for negative Soret
coupling is investigated theoretically. The fixed points corresponding to these
two convection structures are determined for realistic boundary conditions with
a many mode Galerkin scheme for temperature and concentration and an accurate
one mode truncation of the velocity field. This solution procedure yields the
stable and unstable solutions for all stationary and traveling patterns so that
complete phase diagrams for the different convection types in typical binary
liquid mixtures can easily be computed. Also the transition from weakly to
strongly nonlinear states can be analyzed in detail. An investigation of the
concentration current and of the relevance of its constituents shows the way
for a simplification of the mode representation of temperature and
concentration field as well as for an analytically manageable few mode
description.Comment: 30 pages, 12 figure
The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: spectroscopy, orbital analysis, formation, and evolution
Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy
budget of galaxies and probe a critical phase in the evolution of massive stars
prior to core-collapse. It is not known whether core He-burning WR stars
(classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary
stripping (b-WR). With spectroscopy of WR binaries so-far largely avoided due
to its complexity, our study focuses on the 44 WR binaries / binary candidates
of the Large Magellanic Cloud (LMC, metallicity Z~0.5 Zsun), identified on the
basis of radial velocity variations, composite spectra, or high X-ray
luminosities. Relying on a diverse spectroscopic database, we aim to derive the
physical and orbital parameters of our targets, confronting evolution models of
evolved massive stars at sub-solar metallicity, and constraining the impact of
binary interaction in forming them. Spectroscopy is performed using the Potsdam
Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement is
performed using the code Spectangular or the shift-and-add algorithm.
Evolutionary status is interpreted using the Binary Population and Spectral
Synthesis (BPASS) code, exploring binary interaction and chemically-homogeneous
evolution.
No obvious dichotomy in the locations of apparently-single and binary WN
stars on the Hertzsprung-Russell diagram is apparent. According to commonly
used stellar evolution models (BPASS, Geneva), most apparently-single WN stars
could not have formed as single stars, implying that they were stripped by an
undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing
(e.g., during the red supergiant phase) are strongly underestimated in standard
stellar evolution models.Comment: accepted to A&A on 10.05.2019; 69 pages (25 main paper + 44
appendix); Corrigendum: Shenar et al. 2020, A&A, 641, 2: An unfortunate typo
in the implementation of the "transformed radius" caused errors of up to
~0.5dex in the derived mass-loss rates. This has now been correcte
Measuring subdiffusion parameters
We propose a method to extract from experimental data the subdiffusion
parameter and subdiffusion coefficient which are defined by
means of the relation where
denotes a mean square displacement of a random walker starting from
at the initial time . The method exploits a membrane system where a
substance of interest is transported in a solvent from one vessel to another
across a thin membrane which plays here only an auxiliary role. Using such a
system, we experimentally study a diffusion of glucose and sucrose in a gel
solvent. We find a fully analytic solution of the fractional subdiffusion
equation with the initial and boundary conditions representing the system under
study. Confronting the experimental data with the derived formulas, we show a
subdiffusive character of the sugar transport in gel solvent. We precisely
determine the parameter , which is smaller than 1, and the subdiffusion
coefficient .Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.
- …