8,914 research outputs found

    Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case

    Full text link
    Several experimental proposals expect to confirm the recent measurement of the coherent elastic neutrino-nucleus scattering (CEvNS). Motivated in particular by the next generation experiments of the COHERENT collaboration, we study their sensitivity to different tests of the Standard Model and beyond. We analyze the resolution that can be achieved by each future proposed detector in the measurement of the weak mixing angle; we also perform similar analysis in the context of Non-Standard Interaction (NSI) and in the case of an oscillation into a sterile neutrino state. We show that the future perspectives are interesting for these types of new physics searches.Comment: 19 pages, 7 figures, to appear in Advances in High Energy Physic

    Rare top quark decays in extended models

    Get PDF
    Flavor changing neutral currents (FCNC) decays t to H + c, t to Z + c, and H to t + bar{c} are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed.Comment: Contributed talk given at the 10th Mexican Workhop on Particles and Fields, Morelia, Michoacan, Mexico, 7-12 Nov 200

    Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes

    Get PDF
    Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.Comment: 11 pages, 2 figures, to be published in PL

    Improved limit on electron neutrino charge radius through a new evaluation of the weak mixing angle

    Full text link
    We have obtained a new limit on the electron neutrino effective charge radius from a new evaluation of the weak mixing angle by a combined fit of all electron-(anti)neutrino electron elastic scattering measurements. Weak mixing angle is found to be sin^2 theta_W=0.259 \pm 0.025 in the low energy regime below 100 MeV. The electron neutrino charge radius squared is bounded to be in the range -0.13 10^-32 cm^2 < r^2 < 3.32 10^-32 cm^2 at 90 % C.L. Both results improve previously published analyses. We also discuss perspectives of future experiments to improve these constraints.Comment: 10 pages, 2 figures. Final published versio
    corecore