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Interest in light dark matter candidates has recently increased in the literature; some of these works 
consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos 
have been detected with energies higher than have ever been reported before. This opens a new window 
of opportunities to the study of neutrino properties that were unreachable up to now. We investigate 
how an interaction potential between neutrinos and dark matter might induce a resonant enhancement 
in the oscillation probability, an effect that may be tested with future neutrino data.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well known that neutrinos propagating through a mate-
rial medium experience an enhancement effect in the oscillation 
probability, the so-called MSW effect [1]. The standard MSW effect 
takes into account the interaction of active neutrinos with elec-
trons and quarks.

However, the oscillation of standard flavor neutrinos into 
non-standard sterile neutrinos has been considered in previ-
ous works [2] as, e.g., an explanation for the reactor neutrino 
anomaly [3], for the LSND and MiniBooNE experimental results [4], 
in the context of primordial nucleosynthesis [5–10], and in su-
pernovae [11]. In addition, sterile neutrinos appear in models 
attempting to explain the dark matter problem [12], either as the 
main component for the dark matter content or as an additional 
subleading component of a multiparticle dark matter model. Cou-
plings between neutrino, either active or sterile, and dark matter 
have also been studied in many different contexts [13–24].

We propose that, if there is a mixing between active and sterile 
neutrinos, high-energy neutrinos interacting with dark matter may 
suffer a kind of MSW effect when they propagate in a dark matter 
medium. We show that if there is an interaction of neutrinos with 
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dark matter, their corresponding potential might induce a resonant 
effect, in just the same way as active neutrinos are affected by the 
interaction with the electrons of a medium.

2. Dark matter and resonant effects

We begin our analysis by showing the neutrino evolution equa-
tion, which includes both ordinary and dark matter potentials. We 
study a simplified picture with one sterile neutrino, νs , and an ac-
tive one, να . For a neutrino energy, E , the evolution equation can 
be written as

i
d

dt

(
να

νs

)
= Mα

(
να

νs

)
, (1)

with
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(2)

where �m2
i4 = m2

4 − m2
i , and the angle θ0 is the vacuum mix-

ing angle between the sterile and the active neutrino; Vνα f =
V CC

να f + V NC
να f accounts for the well-known interaction potential of 

the active neutrino with ordinary fermions; Vναχ takes into ac-
count the potential due to a possible interaction between active 
neutrinos and dark matter. In this work, we also investigate the 
effect of the potential Vνsχ , coming from the interaction of sterile 
neutrinos with dark matter. This interaction naturally appears in 
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different extensions of the Standard Model, where many dark par-
ticles, including sterile neutrinos, could populate the dark sector 
and interact among themselves [19,20,25]. The interaction poten-
tial Vνs f has already been studied [26] and is negligible compared 
to the other potentials in Eq. (2). Therefore, we do not include it 
in our calculations.

The resonance condition derived from Eq. (1) is then given by

�m2
i4 cos 2θ0 = 2E(Vνα f + Vναχ − Vνsχ ). (3)

We can write these potentials as follows:

Vνα f = 1

4

g2

m2
W

(Nα − Nn/2) = √
2G F (Nα − Nn/2); (4)

Vναχ ∼ gνα gχ

m2
I

Nχ = G ′
να

Nχ = εναχ G F Nχ ; (5)

Vνsχ ∼ gνs gχ

m2
I

Nχ = G ′
νs

Nχ = ενsχ G F Nχ , (6)

where Nα , Nn , and Nχ are, respectively, the number density of 
leptons, neutrons, and dark matter particles interacting with neu-
trinos. In Eq. (4), g is the Standard Model coupling constant and 
mW is the W boson mass; while, gνα , gνs , and gχ represent the 
coupling constants of the corresponding particle (active neutrino, 
sterile neutrino, and dark matter) with an intermediate gauge bo-
son with mass mI . The parameters ενα,sχ account for the coupling 
strength in terms of the Fermi constant G F .

Using the above expressions for the potentials, the resonance 
condition is written as

�m2
i4 cos 2θ0 = 2EG F [√2(Nα − Nn/2) + (εναχ − ενsχ )Nχ ]. (7)

The standard contribution to this equation, Vνα f = √
2G F (Nα −

Nn/2), is zero for the case of electron neutrinos, considering 
an astrophysical environment with Ne ≈ Nn/2, and Vνμ,τ f =
−√

2G F Nn/2 for muon and tau neutrinos (Nμ ≈ Nτ ≈ 0). In prac-
tice, Vνμ,τ f will be negligible in comparison with the new con-
tributions from Vναχ and Vνsχ and, therefore, our results will 
apply to any of the three active neutrino species. For the esti-
mate of the dark matter number density, Nχ , we consider that 
the main contribution arise from a single heavy dark matter parti-
cle with mass mχ and, therefore, the relevant density in our case 
will take the value Nχ = ρχ/mχ .2 To estimate ενα,sχ we need to 
study in detail the coupling constants gνα,νs,χ . Recently, the inter-
est in models with an intermediate boson with a relatively light 
mass mI has grown, especially in the context of the dark matter 
problem [14–18,21]. We show in Table 1 an incomplete list of val-
ues for ενα,sχ in these types of models. Notice that the coupling 
of active neutrinos with dark matter can be strongly constrained 
(gχ gν ∼ 10−6 [16,17]) while for the sterile case the constraints are 
weaker, as should be expected.

3. An application

We now turn our attention to the search for physical processes 
that could be sensitive to the effects of the ν–χ interaction poten-
tial, trying to shed some light in the study of two hidden sectors: 
sterile neutrino and dark matter sectors.

2 It is possible that in some models the heaviest dark particle is different from 
the particles interacting with the sterile neutrinos, however, we would expect the 
number density to be approximately equal; an example in this direction could be 
a mirror model where the interacting particle is a mirror electron and the heaviest 
dark matter particle is a mirror proton.
Table 1
Coupling constants and mass estimates from different models.

Ref.
(gχ )(gν )

(mI /[MeV])2 ενeχ ενsχ
mχ

[MeV]

Aarssen et al. [14] (0.7)(10−6−10−1)

10−2−1
0 105–1015 106

Mirror [19,20] (1)(1)

(30mW )2 0 10−3 103

Fayet [16,17] < 10−6

1 < 105 0 10

Mangano et al. [15] < 10−3

1 < 108 0 10

Fig. 1. Coupling strength |εχ | and dark matter mass mχ corresponding to oscillation 
resonance for active neutrinos with energy E = 1015 eV and �m2 in the range from 
10−18 eV2 up to 10−12 eV2, propagating in the vicinity of our galaxy. In this plot 
we have considered the limit case of a vanishing mixing angle θ0. As a matter of 
comparison, we plot different models considered in the literature. In the left dark 
blue box are those of Fayet [16,17] and in the right light blue box is Aarssen et 
al. [14]. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

In order to find the conditions in which an oscillation resonance 
can take place according to Eq. (7), we compute the values of �m2

(from now on we omit the subscript i4 from �m2
i4), εχ = (εναχ −

ενsχ ), and mχ that induce such an effect. We present our results in 
Fig. 1 for the parameter space |εχ | vs mχ in a range of �m2 values, 
taking as a first approximation θ0 ≈ 0. Notice that εχ changes sign 
depending on which coupling is stronger: whether it is εναχ or 
ενsχ . Therefore, the resonance condition is valid only for neutrinos 
(if εναχ > ενsχ ) or for antineutrinos (if ενsχ > εναχ ).

We have conducted an analysis considering the dark matter 
around our galactic halo, where, on average, the electron density 
can be approximately Ne = 3 × 10−16 eV3 [27] and it is expected 
that ρχ = 0.3 GeV cm−3 [28]. We compute our result for a fixed 
neutrino energy of E = 1015 eV. In particular, we show a tilted 
band that corresponds to the range 10−18 eV2 < �m2 < 10−12 eV2, 
that was previously studied in a similar context, although for 
pseudo-Dirac oscillations [29–34]. In the same Fig. 1, we also 
plot the space of parameters |εχ |-mχ obtained from the work of 
Aarssen et al. [14] (light blue box on the right). These authors dis-
cussed the possibility of an interaction between dark matter and 
neutrinos in order to address 
CDM small-scale problems. We 
consider the couplings discussed in this article as a guidance for 
a sterile neutrino coupling with dark matter. Finally, for the inter-
action between active neutrinos and dark matter, we plot the space 
of parameters (dark blue box on the left) constrained in Refs. [16,
17].

It is quite interesting that this �m2 range is consistent with an 
oscillation resonance for coupling constants and masses for dark 
matter candidates proposed in other articles, especially because it 
has already been noticed that a pseudo-Dirac oscillation could lead 
to an UHE neutrino flux deficit [29]. If the dark matter surround-
ing our galaxy induces such a resonance effect there could be an 
energy range where active neutrinos convert to sterile neutrinos. 



O.G. Miranda et al. / Physics Letters B 744 (2015) 55–58 57
Fig. 2. Survival probability P (να → να) as a function of the neutrino energy Eν , 
considering the galactic halo average dark matter density.

This would cause an important change in the neutrino flux spec-
trum, as long as the source is extragalactic.

Several constraints on the UHE neutrino flux, coming from 
Auger [35] and ANTARES [36] have been reported, and a bound 
on neutrinos from gamma ray bursts has also been presented by 
Icecube [37]. Recently, Icecube also reported the detection of neu-
trinos coming from extraterrestrial sources: The first report pre-
sented the detection of two electron neutrino events with energies 
around PeV [38], while a later report presented data on the detec-
tion of 26 neutrino events in the range of 30–300 TeV [39]. The 
detection of 37 events in three years of data collection was pre-
sented in [40]. Additional research is needed in order to develop a 
more complete understanding of this data [41].

With the accumulation of data from IceCube, Auger, and future 
telescopes as the KM3Net, we would have a better understanding 
of the galactic and extragalactic neutrino spectrum. In this context, 
we would like to study if the interaction potential between neu-
trino and dark matter that we propose might induce an oscillation 
resonance in the UHE regime. If the experiments collect sufficient 
data, it might be possible to observe the MSW mechanism for dark 
matter as a distortion in the UHE neutrino spectrum.

Additionally, instead of considering the limit of a vanishing 
mixing angle, we compute the survival probability for active neu-
trinos as:

P (να → να) = 1 − sin2(2θm) sin2
(
π

Losc
0

Losc
m

)
. (8)

In this expression

sin2(2θm) = sin2(2θ0)

cos2(2θ0)
(

1 − (Vναχ −Vνsχ )

V R

)2 + sin2(2θ0)

, (9)

where V R = �m2

2E cos(2θ0). And the oscillation length in matter is 
given by

Losc
m = Losc

0√
cos2(2θ0)

(
1 − Vναχ −Vνsχ )

V R

)2 + sin2(2θ0)

. (10)

We have computed the survival probability, for different val-
ues of sin2(2θ0), for the case in which the neutrino squared mass 
difference is given by �m2 = 7 × 10−13 eV2, with a coupling 
|εχ | = 3 × 1011, and a dark matter mass mχ = 2 × 1010 eV. We 
found the resonant energy around E = 8 × 1014 eV, as shown 
in Fig. 2. From this figure we see that a mixing of the order 
sin2(2θ0) = 0.25 could give a maximal conversion with a wide en-
ergy window. These values also make an effective oscillation length 
possible in conformity with the expected dark matter halo dimen-
sion [42], as the oscillation length in dark matter may be given by 
Losc

m = 4π E
sin(2θ0)�m2 ∼ 1018 km.

Although this suggests that the high energy spectrum of extra-
galactic neutrinos could be affected by the existence of sterile neu-
trino and its interaction with dark matter, a more detailed study 
must be conducted. For instance, in order to have an MSW reso-
nance, other conditions must be fulfilled [2], like the adiabaticity 
condition. We start from the definition of the adiabaticity parame-
ter [43]:

γ = (�m2
m)2

2E sin(2θm)|dAcc/dr| , (11)

where

sin(2θm) = �m2 sin 2θ0/�m2
m, (12)

�m2
m =

√
(�m2 cos 2θ0 − Acc)2 + (�m2 sin 2θ0)2, (13)

and, in our case,

Acc = 2E(Vνα f + Vναχ − Vνsχ ) � 2Eεχ G F Nχ . (14)

It is possible to note that the adiabaticity condition can be ex-
pressed as

γ = ((�m2 cos 2θ0 − 2Eεχ G F Nχ )2 + (�m2 sin 2θ0)
2)3/2

4E2�m2 sin 2θ0εχ G F |dNχ/dr| >> 1.

(15)

This condition is satisfied for the case of a constant density dark 
matter distribution. Another important condition to be fulfilled, in 
order to have significant conversion probability, is that the width 
d of dark matter [2], should be larger than a minimum width dmin . 
Following closely Ref. [2], in our analysis, this condition is given by

d =
∫

Nχ (L)dL ≥ dmin = 1

|εχ |G F tan 2θ0
, (16)

where L denotes the distance traveled by the neutrino in the dark 
matter medium. Taking into account the parameters considered 
for Fig. 2, that is |εχ | = 3 × 1011 and sin2(2θ0) = 0.25, we ob-
tain dmin = 1.3 × 1021 cm−2, while, for a dark matter halo of 
6 × 1018 km, d = 9 × 1021 cm−2. This shows that the width of 
dark matter is approximately one order of magnitude bigger than 
the minimum width, making the conversion from active to sterile 
neutrinos possible.

Although it is promising that these resonance conditions [2] are 
satisfied for a constant distribution, it would be necessary to study 
the case of a more realistic dark matter profile. In order to obtain 
a first estimate, we consider a halo density of the form

ρ(r) = ρ0

(r/R)δ[1 + (r/R)α](β−δ)/α
, (17)

where α, β , δ, and R (in kpc) depend on the specific model to 
be considered [44]. We have computed the adiabaticity parame-
ter for the widely known profiles of Navarro, Frenk, White [45]
(α = 1, β = 3, δ = 1 and R = 20 kpc), Kravtsov et al. [47] (α = 2, 
β = 3, δ = 0.4 and R = 10 kpc), Moore et al. [48] (α = 1.5, β = 3, 
δ = 1.5 and R = 28 kpc), and for the modified isothermal pro-
file [46] (α = 2, β = 2, δ = 0 and R = 3.5 kpc). We found that the 
three resonance conditions are satisfied for all the profiles if we 
consider a dark matter mass of the order of 100 MeV, the same 
parameter for neutrino mass difference, �m2 = 7 × 10−13 eV2, the 
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coupling |εχ | = 3 × 1011, and a neutrino energy E = 10 TeV. For 
these parameters, in the case of the Navarro, Frenk and White pro-
file, the minimum value of the adiabaticity parameter is γ ≈ 13
and the resonance is located around 18 kpc from the galactic cen-
ter. The dark matter width is d = 1.3 × 1023 cm−2 > dmin . These 
results are encouraging and suggest that a wider region of pa-
rameters, satisfying the resonance conditions, could be found by 
conducting a detailed study for these profiles.

4. Conclusions

In summary, in this work we have studied the possibility that 
neutrinos might have a resonant effect in the presence of addi-
tional sterile neutrino states and dark matter. We have conducted 
an analysis of the necessary couplings of dark matter with either 
active or sterile neutrinos in order to have such an effect. Our re-
sults show that, if the phenomenological models discussed here 
happen in nature, they may induce a resonant oscillation of high 
energy active to sterile neutrinos. We have shown values of �m2

i4
where there could be a resonant effect for an adequate range of 
neutrino couplings and dark matter mass. The mechanism dis-
cussed here could be tested with future ultra high energy neutrino 
data, for instance, from the IceCube experiment.
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