14 research outputs found

    Synthesis, biological evaluation and docking of novel bisamidinohydrazones as NON-peptide inhibitors of furin

    No full text
    A series of novel non-peptidic furin inhibitors with values of inhibitory constants (Ki) in the range of 0.74-1.54 μM was obtained by interactions of aminoguanidine hydrocarbonate with three diaryldicarbaldehydes. Correspondingly p-hydroquinone, piperazine and adipic acid were used as linkers between their benzene moieties. Docking studies of these new inhibitors into recently published 3D-structure of human furin (PDB code 4OMC) showed that they were able to interact with subsites S1 and S4 of the enzyme. The overall arrangement of bisamidinohydrazones into furin active site was similar to the position of the ligand co-crystallized with a protease. Observations obtained with molecular modeling allowed further guidance into chemical modifications of the synthesized inhibitors which improve their inhibitory activity

    Synthesis, biological evaluation and docking of novel bisamidinohydrazones as NON-peptide inhibitors of furin

    No full text
    A series of novel non-peptidic furin inhibitors with values of inhibitory constants (Ki) in the range of 0.74-1.54 μM was obtained by interactions of aminoguanidine hydrocarbonate with three diaryldicarbaldehydes. Correspondingly p-hydroquinone, piperazine and adipic acid were used as linkers between their benzene moieties. Docking studies of these new inhibitors into recently published 3D-structure of human furin (PDB code 4OMC) showed that they were able to interact with subsites S1 and S4 of the enzyme. The overall arrangement of bisamidinohydrazones into furin active site was similar to the position of the ligand co-crystallized with a protease. Observations obtained with molecular modeling allowed further guidance into chemical modifications of the synthesized inhibitors which improve their inhibitory activity

    Light-mediated inhibition of protein synthesis

    Get PDF
    The regulation of protein synthesis is vital for a host of cell biological processes, but investigating roles for protein synthesis have been hindered by the inability to selectively interfere with it. To inhibit protein synthesis with spatial and temporal control, we have developed a photo-releasable anisomycin compound, N-([6-bromo-7-hydroxycoumarin-4-yl]methyloxycarbonyl)anisomycin (Bhc-Aniso), that can be removed through exposure to UV light. The area of protein synthesis inhibition can be restricted to a small light-exposed region or, potentially, the volume of two-photon excitation if a pulsed IR laser is the light source. We have tested the compound's effectiveness with an in vitro protein-translation system, CHO cells, HEK293 cells, and neurons. The photo-released anisomycin can inhibit protein synthesis in a spatially restricted manner, which will enable the specific inhibition of protein synthesis in subsets of cells with temporal and spatial precision
    corecore