12 research outputs found

    Classical swine fever virus E2 glycoprotein antigen produced in adenovirally transduced PK-15 cells confers complete protection in pigs upon viral challenge

    No full text
    E2 is the major envelope glycoprotein present on the outer surface of the classical swine fever virus (CSFV). It is exposed as a homodimer originated by disulfide linkage and represents an important target for the induction of neutralizing immune responses against the viral infection. The E2his glycoprotein nucleotide sequence used in this work contains the CSFV E2 extracellular domain preceded by the tissue plasminogen signal peptide and a hexa-histidine tag in the 3′ terminus. The recombinant antigen was produced at a range of 120-150 μg/mL in the culture media of epithelial kidney pig cells, transduced with a replication defective adenoviral vector (Ad-E2his) generated by means of cloning the E2his sequence in the vector genome. The glycoprotein was obtained from clarified culture media as a homodimer of 110 kDa with purity over 95% after a single affinity chromatography step in Ni-NTA Agarose column. The E2his characterization by lectin-specific binding assay showed the presence of N-linked oligosaccharides of both hybrid and complex types. The protective capacity of E2his was demonstrated in two immunization and challenge experiments in pigs using doses of 15 or 30 μg of the glycoprotein, emulsified in Freund's adjuvant. The intramuscular immunization followed by a unique boost three weeks later, elicited high titers of neutralizing antibodies between the second and the fourth week after the primary vaccination. The immunized animals were fully protected from the viral infection after challenge with 105 PLD50 of homologous CSFV "Margarita" strain administered by intramuscular injection. Consequently, no clinical signs of the disease or viral isolation from lymphocytes were detected in the vaccinated pigs. These results suggest that the E2his antigen produced in mammalian cells may be a feasible vaccine candidate for CSF prevention. © 2007 Elsevier Ltd. All rights reserved

    Production and biochemical characterization of the recombinant Boophilus microplus Bm95 antigen from Pichia pastoris

    No full text
    The new antigen Bm95 from the cattle tick Boophilus microplus was recently isolated, cloned and expressed in the methylotrophic yeast Pichia pastoris. The recombinant protein has shown to induce protection in cattle against infestations of B. microplus under controlled and production conditions. In this paper we report the production and large-scale purification of the Bm95 protein, following a simple and cost-effective process. The antigen was obtained highly aggregated, forming particles ranging from 26 to 30 nm and with purity higher than 80%. The process yield was 0.55 g of pure Bm95 protein per liter of culture. The 98% of the primary structure of the recombinant protein was verified by mass spectrometry. Three amino acid changes in comparison with the sequence deduced from cDNA were detected by LC-MS/MS. The antigen was also obtained N-glycosylated, as previously reported for heterologous protein expression in P. pastoris

    Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats

    No full text
    Classical swine fever virus is the etiological agent of the most economically important highly contagious disease of swine worldwide. E2 is the major envelope glycoprotein present as a homodimer on the outer surface of the virus and represents an important target for the induction of neutralizing immune response against the viral infection. The E2 extracellular domain was expressed in the milk of adenoviral transduced goats at the highest level about 1.2 g/L. The recombinant glycoprotein was purified from clarified serum milk by a single metal chelate affinity chromatography step, as a homodimer of approximately 100 kDa and purity over 98%. Glycosylation analysis showed the presence of oligomannoside, hybrid and complex type N-glycans, attached to the recombinant E2. The capacity of goat milk-derived E2 antigen to protect pigs from both classical swine fever clinical signs and viral infection was assessed in a vaccination and challenge trial. The immunized pigs became protected after challenge with 105 LD50 of a highly pathogenic CSFV strain. In the context of veterinary vaccines, this expression system has the advantages that the recombinant antigen could be harvested in about 48 h after adenoviral transduction with expression levels in the range of g/L. This approach may turn into a scalable expression system for the assessment and production of veterinary vaccines. © 2007 Elsevier B.V. All rights reserved

    Efficacy of the Bm86 antigen against immature instars and adults of the dog tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae)

    No full text
    The Bm86 antigen has been used to control ticks of the Boophilus genera in integrated programs that also include the use of acaricides. Because of recent phylogenetic studies have lead to the inclusion of all Boophilus species within the Rhipicephalus genera, we aimed to investigate the efficacy of the Bm86 antigen on the biotic potential of Rhipicephalus sanguineus. Domestic dogs were vaccinated with Bm86 and challenged with the three instars; of R. sanguineus. Male and female mongrel dogs were divided into two groups of four animals each, comprising non-vaccinated and vaccinated animals. Immunized dogs were given two doses of an experimental formulation containing 50 mu g of recombinant Bm86, at 21 days interval while the other group was given placebo, consisting of the same preparation without Bm86. Each dog was challenged 21 days after the last dose with 250 larvae, 100 nymphs and 55 adults (25 females and 30 males) released inside feeding chambers (one per instar) glued to their shaved flank. The effect of the vaccination was evaluated by determining biological parameters of ticks including the yield rates of larvae, nymphs and adult females. Adult females engorged weight, egg mass weight, efficiency rate of conversion to eggs (ERCE) and hatchability. In addition, sera were collected from dogs at 0, 21, 36,45 and 75 days after the vaccination and used for the detection of specific antibodies by ELISA. Collection rates of larvae, nymphs and adult females fed on vaccinated dogs were significantly (p < 0.05) reduced by 38%, 29% and 31%, respectively. as compared with non-vaccinated controls. Significant reductions were also observed in weight of engorged females and egg mass, in ERCE, but not in the hatch rate of ticks fed on immunized dogs. ELISA data revealed a marked and significant increase in optical densities of sera from vaccinated animals after the second dose of Bm86. We concluded that the Bm86 antigen used as a vaccine for dogs reduced the viability and biotic potential of the R. sanguineus. (C) 2009 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore