56 research outputs found

    An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells

    Get PDF
    INTRODUCTION: About 70% of breast cancers express oestrogen receptor alpha (ESR1/ERalpha) and are oestrogen-dependent for growth. In contrast with the highly proliferative nature of ERalpha-positive tumour cells, ERalpha-positive cells in normal breast tissue rarely proliferate. Because ERalpha expression is rapidly lost when normal human mammary epithelial cells (HMECs) are grown in vitro, breast cancer models derived from HMECs are ERalpha-negative. Currently only tumour cell lines are available to model ERalpha-positive disease. To create an ERalpha-positive breast cancer model, we have forced normal HMECs derived from reduction mammoplasty tissue to express ERalpha in combination with other relevant breast cancer genes. METHODS: Candidate genes were selected based on breast cancer microarray data and cloned into lentiviral vectors. Primary HMECs prepared from reduction mammoplasty tissue were infected with lentiviral particles. Infected HMECs were characterised by Western blotting, immunofluorescence microscopy, microarray analysis, growth curves, karyotyping and SNP chip analysis. The tumorigenicity of the modified HMECs was tested after orthotopic injection into the inguinal mammary glands of NOD/SCID mice. Cells were marked with a fluorescent protein to allow visualisation in the fat pad. The growth of the graft was analysed by fluorescence microscopy of the mammary glands and pathological analysis of stained tissue sections. Oestrogen dependence of tumour growth was assessed by treatment with the oestrogen antagonist fulvestrant. RESULTS: Microarray analysis of ERalpha-positive tumours reveals that they commonly overexpress the Polycomb-group gene BMI1. Lentiviral transduction with ERalpha, BMI1, TERT and MYC allows primary HMECs to be expanded in vitro in an oestrogen-dependent manner. Orthotopic xenografting of these cells into the mammary glands of NOD/SCID mice results in the formation of ERalpha-positive tumours that metastasise to multiple organs. The cells remain wild type for TP53, diploid and genetically stable. In vivo tumour growth and in vitro proliferation of cells explanted from tumours are dependent on oestrogen. CONCLUSION: We have created a genetically defined model of ERalpha-positive human breast cancer based on normal HMECs that has the potential to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasi

    RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions

    Get PDF
    BACKGROUND: Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS: A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5′-UTR, 3′-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5’-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3’-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37°C versus 28°C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49% and 51% similarity, and 16% and 17% identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION: Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species

    Successful treatment with daptomycin and ceftaroline of MDR Staphylococcus aureus native valve endocarditis: a case report.

    No full text
    The best therapeutic approach for treating MRSA endocarditis remains unknown, particularly in cases of high vancomycin MICs. We report here a case of daptomycin-non-susceptible, ceftaroline-resistant and fosfomycin-resistant MRSA native left valve endocarditis that was successfully treated with valve repair and a combination of high-dose daptomycin and ceftaroline. Antimicrobial testing of the clinical strain was performed using Etest and microdilution broth methods. Time-kill and chequerboard methodologies were used to test the activity of antibiotic combinations. By Etest, the MIC of vancomycin was 2 mg/L, the MIC of daptomycin was 2 mg/L, the MIC of fosfomycin was 1024 mg/L and the MIC of ceftaroline was 1.5 mg/L. At the standard inoculum (105 cfu/mL), the three combinations of daptomycin plus ceftaroline, cloxacillin or fosfomycin were synergistic and bactericidal. However, when these combinations were tested using a higher inoculum (108 cfu/mL), all combinations were synergistic, but only daptomycin plus ceftaroline had bactericidal activity. These results confirmed a synergistic effect between daptomycin plus ceftaroline and increased bactericidal activity against MRSA, suggesting that this combination may be effective for the treatment of invasive MRSA infection. Our experience highlights the potential clinical use of synergy testing to guide difficult treatment decisions in patients with MDR MRSA infection

    A 3-step therapeutic strategy for severe alveolar proteinosis.

    No full text
    Pulmonary alveolar proteinosis (PAP) is characterized by accumulation of lipoproteinaceous material in the terminal airways. Whole lung lavage (WLL) remains the gold standard treatment but may be particularly challenging in cases of severe hypoxemia. We present a 3-step strategy that was used in a patient with PAP-associated refractory hypoxemia and that combined venovenous extracorporeal membrane oxygenation (vvECMO), double-lumen orotracheal intubation, and bilateral multisegmental sequential lavage (MSL). The procedure was well tolerated and permitted weaning from the ventilator

    Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy

    No full text
    We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1β (IL1β) and measured [superscript 1]H, [superscript 15]N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the Δχ-tensors associated with each Tm[superscript 3+]-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in protein–protein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1β-S2R2 and the respective single-loop-LBT constructs IL1β-S2, IL1β-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd[superscript 3+] as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed Electron–Electron Dipolar Resonance.German Science Foundation (collaborative research centers 807 and 902)National Science Foundation (U.S.) (Grant MCB 0744415
    corecore