3,013 research outputs found
Probabilistic Page Replacement Policy in Buffer Cache Management for Flash-Based Cloud Databases
In the fast evolution of storage systems, the newly emerged flash memory-based Solid State Drives (SSDs) are becoming an important part of the computer storage hierarchy. Amongst the several advantages of flash-based SSDs, high read performance, and low power consumption are of primary importance. Amongst its few disadvantages, its asymmetric I/O latencies for read, write and erase operations are the most crucial for overall performance. In this paper, we proposed two novel probabilistic adaptive algorithms that compute the future probability of reference based on recency, frequency, and periodicity of past page references. The page replacement is performed by considering the probability of reference of cached pages as well as asymmetric read-write-erase properties of flash devices. The experimental results show that our proposed method is successful in minimizing the performance overheads of flash-based systems as well as in maintaining the good hit ratio. The results also justify the utility of a genetic algorithm in maximizing the overall performance gains
Wavelet Filter Banks for Super-Resolution SAR Imaging
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem
A tunable, dual mode field-effect or single electron transistor
A dual mode device behaving either as a field-effect transistor or a single
electron transistor (SET) has been fabricated using silicon-on-insulator metal
oxide semiconductor technology. Depending on the back gate polarisation, an
electron island is accumulated under the front gate of the device (SET regime),
or a field-effect transistor is obtained by pinching off a bottom channel with
a negative front gate voltage. The gradual transition between these two cases
is observed. This dual function uses both vertical and horizontal tunable
potential gradients in non-overlapped silicon-on-insulator channel
Determining the Weak Phase From Charged Decays
A quadrangle relation is shown to be satisfied by the amplitudes for , and . By comparison with the
corresponding relation satisfied by decay amplitudes, it is shown that
the relative phases of all the amplitudes can be determined up to discrete
ambiguities. Making use of an SU(3) relation between amplitudes contributing to
the above decays and those contributing to , it is
then shown that one can determine the weak phase , where is the Cabibbo-Kobayashi-Maskawa
matrix describing the charge-changing weak interactions between the quarks
and .Comment: 16 pages, latex, 7 uuencoded figure
Phase transitions on the surface of a carbon nanotube
A suspended carbon nanotube can act as a nanoscale resonator with remarkable
electromechanical properties and the ability to detect adsorption on its
surface at the level of single atoms. Understanding adsorption on nanotubes and
other graphitic materials is key to many sensing and storage applications. Here
we show that nanotube resonators offer a powerful new means of investigating
fundamental aspects of adsorption on carbon, including the collective behaviour
of adsorbed matter and its coupling to the substrate electrons. By monitoring
the vibrational resonance frequency in the presence of noble gases, we observe
the formation of monolayers on the cylindrical surface and phase transitions
within these monolayers, and simultaneous modification of the electrical
conductance. The monolayer observations also demonstrate the possibility of
studying the fundamental behaviour of matter in cylindrical geometry.Comment: Unpublished; 7 pages with 4 figures plus 3 pages of supplementary
materia
Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths
The results of simultaneous multifrequency observations of giant radio pulses
from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and
analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the
first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with
counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses
detected at 111 MHz, 21 were identified with counterparts observed
simultaneously at 600 MHz. The spectral indices for the power-law frequency
dependence of the giant-pulse energies are from -3.1 to -1.6. The mean spectral
index is -2.7 +/- 0.1 and is the same for both frequency combinations (600-111
MHz and 600-23 MHz). The large scatter in the spectral indices of the
individual pulses and the large number of unidentified giant pulses suggest
that the spectra of the individual giant pulses do not actually follow a simple
power law. The observed shapes of the giant pulses at all three frequencies are
determined by scattering on interstellar plasma irregularities. The scatter
broadening of the pulses and its frequency dependence were determined as
tau_sc=20*(f/100)^(-3.5 +/- 0.1) ms, where the frequency f is in MHz.Comment: 13 pages, 1 figure, 1 table (originally published in Russian in
Astronomicheskii Zhurnal, 2006, vol. 83, No. 7, pp. 630-637), translated by
Georgii Rudnitski
- …