1,176 research outputs found

    Individual Eigenvalue Distributions for the Wilson Dirac Operator

    Full text link
    We derive the distributions of individual eigenvalues for the Hermitian Wilson Dirac Operator D5 as well as for real eigenvalues of the Wilson Dirac Operator DW. The framework we provide is valid in the epsilon regime of chiral perturbation theory for any number of flavours Nf and for non-zero low energy constants W6, W7, W8. It is given as a perturbative expansion in terms of the k-point spectral density correlation functions and integrals thereof, which in some cases reduces to a Fredholm Pfaffian. For the real eigenvalues of DW at fixed chirality nu this expansion truncates after at most nu terms for small lattice spacing "a". Explicit examples for the distribution of the first and second eigenvalue are given in the microscopic domain as a truncated expansion of the Fredholm Pfaffian for quenched D5, where all k-point densities are explicitly known from random matrix theory. For the real eigenvalues of quenched DW at small "a" we illustrate our method by the finite expansion of the corresponding Fredholm determinant of size nu.Comment: 20 pages, 5 figures; v2: typos corrected, refs added and discussion of W6 and W7 extende

    Spectral Properties of the Overlap Dirac Operator in QCD

    Full text link
    We discuss the eigenvalue distribution of the overlap Dirac operator in quenched QCD on lattices of size 8^{4}, 10^{4} and 12^{4} at \beta = 5.85 and \beta = 6. We distinguish the topological sectors and study the distributions of the leading non-zero eigenvalues, which are stereographically mapped onto the imaginary axis. Thus they can be compared to the predictions of random matrix theory applied to the \epsilon-expansion of chiral perturbation theory. We find a satisfactory agreement, if the physical volume exceeds about (1.2 fm)^{4}. For the unfolded level spacing distribution we find an accurate agreement with the random matrix conjecture on all volumes that we considered.Comment: 16 pages, 8 figures, final version published in JHE

    Smallest Dirac Eigenvalue Distribution from Random Matrix Theory

    Get PDF
    We derive the hole probability and the distribution of the smallest eigenvalue of chiral hermitian random matrices corresponding to Dirac operators coupled to massive quarks in QCD. They are expressed in terms of the QCD partition function in the mesoscopic regime. Their universality is explicitly related to that of the microscopic massive Bessel kernel.Comment: 4 pages, 1 figure, REVTeX. Minor typos in subscripts corrected. Version to appear in Phys. Rev.

    Random Matrix Theory for the Hermitian Wilson Dirac Operator and the chGUE-GUE Transition

    Full text link
    We introduce a random two-matrix model interpolating between a chiral Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in refs. [20,21]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with nu=0,1 we derive all spectral correlations functions in our model for finite-n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.Comment: 27 pages, 4 figures; v2 typos corrected, published versio

    The Several Guises of the BRST Symmetry

    Get PDF
    We present several forms in which the BRST transformations of QCD in covariant gauges can be cast. They can be non-local and even not manifestly covariant. These transformations may be obtained in the path integral formalism by non standard integrations in the ghost sector or by performing changes of ghost variables which leave the action and the path integral measure invariant. For different changes of ghost variables in the BRST and anti-BRST transformations these two transformations no longer anticommute.Comment: 3 pages, revte

    Critical Behavior of Non Order-Parameter Fields

    Get PDF
    We show that all of the relevant features of a phase transition can be determined using a non order parameter field which is a physical state of the theory. This fact allows us to understand the deconfining transition of the pure Yang-Mills theory via the physical excitations rather than using the Polyakov loop.Comment: RevTeX, 4-pages, 1 figur

    On Witten's global anomaly for higher SU(2) representations

    Get PDF
    The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The computation is done with the SU(2) gauge field in the fundamental, the 3/2, and the 5/2 representation. The number of eigenvalue pairs that change places along this path is established for these three representations and an even-odd pattern predicted by Witten is verified.Comment: 24 pages, 12 eps figure

    The Chiral Condensate in a Finite Volume

    Full text link
    Chiral perturbation theory at finite four-volume V (=L^3T) is reconsidered with a view towards finding a computational scheme that can deal with any value of M_\pi L, where M_\pi is a generic Nambu-Goldstone mass. The momentum zero modes that cause the usual p-expansion to fail in the chiral limit are treated separately, and partly integrated out to all orders. In this way the theory remains infrared finite in the perturbative expansion, and the chiral limit can be considered at finite volume. We illustrate the technique by computing the quark condensate in a finite volume, smoothly connecting standard results in the p-regime for larger masses with those of the epsilon-regime for smaller masses. From the partially quenched theory we also obtain the spectral density of the Dirac operator, a smooth function from the microscopic region to the bulk region of the p-regime.Comment: 33 pages, 10 figures, corrections in (4.7), (6.5), (6.8), additional comment on (3.16

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, ≀25\leq 25%; these represent corrections of ∌1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=∞N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange

    Morphology of High-Multiplicity Events in Heavy Ion Collisions

    Full text link
    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of non-collective origin such as jets.Comment: Matches version accepted for publication in Physical Review C. 13 pages, 9 figure
    • 

    corecore