14 research outputs found

    Defect studies and optical activation of Yb doped GaN

    No full text
    Wide band-gap semiconductors, particularly III-nitrides, became one of the most studied materials during the last decades. These compounds are the base of a new generation of optoelectronic devices operating in the UV-Blue region of the electromagnetic spectrum. Incorporation of rare-earth (RE) ions into nitrides creates new routes to build all-nitride electroluminescent devices, using the sharp intra-4fn transitions of these elements. The introduction of the RE ions in the nitride lattice during the growth or by ion implantation creates defects which influence the optical behaviour of the doped region. In this work we report the results on Yb implanted GaN. A combination of techniques (Rutherford backscattering/Channeling and Photoluminescence) was used to assess the mechanisms responsible for the optical and structural behaviour of the doped materials. Lattice site location experiments showed that Yb is incorporated into positions slightly displaced from the Ga-site. Clearly the optical activity of the RE could be enhanced by orders of magnitude reducing the number of non-radiative recombination paths related with defectsFCT - PPCDT/FIS/57550/2004bilateral collaboration Portugal-Poland (GRICES)

    Defect studies and optical activation of Yb doped GaN

    No full text
    Wide band-gap semiconductors, particularly III-nitrides, became one of the most studied materials during the last decades. These compounds are the base of a new generation of optoelectronic devices operating in the UV-Blue region of the electromagnetic spectrum. Incorporation of rare-earth (RE) ions into nitrides creates new routes to build all-nitride electroluminescent devices, using the sharp intra-4fn transitions of these elements. The introduction of the RE ions in the nitride lattice during the growth or by ion implantation creates defects which influence the optical behaviour of the doped region. In this work we report the results on Yb implanted GaN. A combination of techniques (Rutherford backscattering/Channeling and Photoluminescence) was used to assess the mechanisms responsible for the optical and structural behaviour of the doped materials. Lattice site location experiments showed that Yb is incorporated into positions slightly displaced from the Ga-site. Clearly the optical activity of the RE could be enhanced by orders of magnitude reducing the number of non-radiative recombination paths related with defectsFCT - PPCDT/FIS/57550/2004bilateral collaboration Portugal-Poland (GRICES)

    Defect studies and optical activation of Yb doped GaN

    No full text
    Wide band-gap semiconductors, particularly III-nitrides, became one of the most studied materials during the last decades. These compounds are the base of a new generation of optoelectronic devices operating in the UV-Blue region of the electromagnetic spectrum. Incorporation of rare-earth (RE) ions into nitrides creates new routes to build all-nitride electroluminescent devices, using the sharp intra-4fn transitions of these elements. The introduction of the RE ions in the nitride lattice during the growth or by ion implantation creates defects which influence the optical behaviour of the doped region. In this work we report the results on Yb implanted GaN. A combination of techniques (Rutherford backscattering/Channeling and Photoluminescence) was used to assess the mechanisms responsible for the optical and structural behaviour of the doped materials. Lattice site location experiments showed that Yb is incorporated into positions slightly displaced from the Ga-site. Clearly the optical activity of the RE could be enhanced by orders of magnitude reducing the number of non-radiative recombination paths related with defectsFCT - PPCDT/FIS/57550/2004bilateral collaboration Portugal-Poland (GRICES)
    corecore