2,484 research outputs found
Budget Deficit, Money Supply and Inflation: Evidence from Low and High Frequency Data for Turkey
A Semantic Grid Oriented to E-Tourism
With increasing complexity of tourism business models and tasks, there is a
clear need of the next generation e-Tourism infrastructure to support flexible
automation, integration, computation, storage, and collaboration. Currently
several enabling technologies such as semantic Web, Web service, agent and grid
computing have been applied in the different e-Tourism applications, however
there is no a unified framework to be able to integrate all of them. So this
paper presents a promising e-Tourism framework based on emerging semantic grid,
in which a number of key design issues are discussed including architecture,
ontologies structure, semantic reconciliation, service and resource discovery,
role based authorization and intelligent agent. The paper finally provides the
implementation of the framework.Comment: 12 PAGES, 7 Figure
Geometric invariant theory of syzygies, with applications to moduli spaces
We define syzygy points of projective schemes, and introduce a program of
studying their GIT stability. Then we describe two cases where we have managed
to make some progress in this program, that of polarized K3 surfaces of odd
genus, and of genus six canonical curves. Applications of our results include
effectivity statements for divisor classes on the moduli space of odd genus K3
surfaces, and a new construction in the Hassett-Keel program for the moduli
space of genus six curves.Comment: v1: 23 pages, submitted to the Proceedings of the Abel Symposium
2017, v2: final version, corrects a sign error and resulting divisor class
calculations on the moduli space of K3 surfaces in Section 5, other minor
changes, In: Christophersen J., Ranestad K. (eds) Geometry of Moduli.
Abelsymposium 2017. Abel Symposia, vol 14. Springer, Cha
Inflation and Disinflation in Turkey
Based on its outward-oriented development strategy, respectable growth, increased integration into world trade and financial markets, and imperfect though vibrant and wide-based democracy, Turkey is often cited as a development model for other countries in the region and elsewhere. Countering this positive picture of the Turkish economy over the last two decades, however, is the incompleteness of its reform process: the boom-bust nature of its growth, persistently high inflation, delays in privatising state-owned enterprises, and high and persistent government budget deficits. In January 2000 Turkey embarked on an ambitious IMF-backed stabilization program designed to correct the weaknesses in its economy, and, in particular, to reduce inflation to single digits by the end of 2002. Since then, though, Turkey has experienced two financial crises and redesigned its stabilization program to bring inflation down more gradually. This collection analyzes the nature of Turkey's inflation and the likely costs and benefits of disinflation
Strange Meson Enhancement in PbPb Collisions
The NA44 Collaboration has measured yields and differential distributions of
K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the
center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A
considerable enhancement of K+ production per pi is observed, as compared to
p+p collisions at this energy. To illustrate the importance of secondary hadron
rescattering as an enhancement mechanism, we compare strangeness production at
the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE
Survey of Sensor Technology for Aircraft Cabin Environment Sensing
The aircraft cabin environment is unique due to the proximity of the passengers, the need for cabin pressurization, and the low humidity. All of these aspects are complicated by the fact that the aircraft is a semi-enclosed structure. There is an increased desire to monitor the aircraft cabin environment with various sensors for comfort and safety. However, the aircraft cabin environment is composed of a large number of factors. Some of these factors can include air quality, temperature, level of pressurization, and motion of the aircraft. Therefore, many types of sensors must be used to monitor aircraft environments. A variety of technology options are often available for each sensor. Consequently, a fair number of tradeoffs need to be carefully considered when designing a sensor monitoring system for the aircraft cabin environment. For instance, a system designer may need to decide if the increased accuracy of a sensor using a particular technology is worth the increased power consumption over a similar sensor employing a more efficient, less accurate technology. In order to achieve a good solution, a designer needs to understand the tradeoffs and general operation for all of the different sensor technologies that could be used in the design. The purpose of this paper is to provide a survey of the current sensor technology. The primary focus of this paper is on sensors and technologies that cover the most common aspects of aircraft cabin environment monitoring. The first half of this paper details the basic operation of different sensor technologies. The second half covers the individual environmental conditions which need to be sensed. This will include the benefits, limitations, and applications of the different technologies available for each particular type of sensor
Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge
Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)
John J. Davenport, NARRATIVE IDENTITY, AUTONOMY, AND MORALITY: FROM FRANKFURT AND MACINTYRE TO KIERKEGAARD, and Anthony Rudd, SELF, VALUE AND NARRATIVE: A KIERKEGAARDIAN APPROACH
Studies of the dose-effect relation
Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action
- …
