7,734 research outputs found

    ANNz: estimating photometric redshifts using artificial neural networks

    Get PDF
    We introduce ANNz, a freely available software package for photometric redshift estimation using Artificial Neural Networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the r.m.s. redshift error in the range 0 < z < 0.7 is 0.023. Non-ideal conditions (spectroscopic sets which are small, or which are brighter than the photometric set for which redshifts are required) are simulated and the impact on the photometric redshift accuracy assessed.Comment: 6 pages, 6 figures. Replaced to match version accepted by PASP (minor changes to original submission). The ANNz package may be obtained from http://www.ast.cam.ac.uk/~aa

    Quarkonium states in an anisotropic QCD plasma

    Full text link
    We consider quarkonium in a hot QCD plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.Comment: 18 pages, 6 figures, final version, to appear in PR

    Boson mass spectrum in SU(4)LU(1)YSU(4)_L\otimes U(1)_Y model with exotic electric charges

    Full text link
    The boson mass spectrum of the electro-weak \textbf{SU(4)LU(1)YSU(4)_{L}\otimes U(1)_{Y}} model with exotic electric charges is investigated by using the algebraical approach supplied by the method of exactly solving gauge models with high symmetries. Our approach predicts for the boson sector a one-parameter mass scale to be tuned in order to match the data obtained at LHC, LEP, CDF.Comment: 12 pages, 1 Table with numerical estimates and 1 Figure added, mistaken results correcte

    Public ubiquitous computing systems:lessons from the e-campus display deployments

    Get PDF
    In this paper we reflect on our experiences of deploying ubiquitous computing systems in public spaces and present a series of lessons that we feel will be of benefit to researchers planning similar public deployments. We focus on experiences gained from building and deploying three experimental public display systems as part of the e-campus pro ject. However, we believe the lessons are likely to be generally applicable to many different types of public ubicomp deployment

    Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray

    Get PDF
    The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception

    Local moments and symmetry breaking in metallic PrMnSbO

    Full text link
    We report a combined experimental and theoretical investigation of the layered antimonide PrMnSbO which is isostructural to the parent phase of the iron pnictide superconductors. We find linear resistivity near room temperature and Fermi liquid-like T^{2} behaviour below 150 K. Neutron powder diffraction shows that unfrustrated C-type Mn magnetic order develops below \sim 230 K, followed by a spin-flop coupled to induced Pr order. At T \sim 35 K, we find a tetragonal to orthorhombic (T-O) transition. First principles calculations show that the large magnetic moments observed in this metallic compound are of local origin. Our results are thus inconsistent with either the itinerant or frustrated models proposed for symmetry breaking in the iron pnictides. We show that PrMnSbO is instead a rare example of a metal where structural distortions are driven by f-electron degrees of freedom
    corecore