73 research outputs found

    New bryophyte taxon records for tropical countries 1

    Get PDF
    This is the first in a series of papers listing new records, which will be published whenever sufficient new records have been found. The taxa are arranged by countries for an easier evaluation, e.g. updates of checklists. The initials of the contributor for each record is shown in square brackets after the record, and these initials are interpreted at the end of the paper

    British Bryological Society expedition to Mulanje Mountain, Malawi : 13., new and other unpublished records

    Get PDF
    Further results are provided of the 1991 British Bryological Society Expedition to Mulanje Mt., Malawi including 168 taxa of bryophyte, comprising 72 taxa of liverwort (38 new to Malawi) and 96 taxa of mosses (45 new to Malawi)

    The Santa Fe Light Cone Simulation Project: I. Confusion and the WHIM in Upcoming Sunyaev-Zel'dovich Effect Surveys

    Full text link
    We present the first results from a new generation of simulated large sky coverage (~100 square degrees) Sunyaev-Zeldovich effect (SZE) cluster surveys using the cosmological adaptive mesh refinement N-body/hydro code Enzo. We have simulated a very large (512^3h^{-3}Mpc^3) volume with unprecedented dynamic range. We have generated simulated light cones to match the resolution and sensitivity of current and future SZE instruments. Unlike many previous studies of this type, our simulation includes unbound gas, where an appreciable fraction of the baryons in the universe reside. We have found that cluster line-of-sight overlap may be a significant issue in upcoming single-dish SZE surveys. Smaller beam surveys (~1 arcmin) have more than one massive cluster within a beam diameter 5-10% of the time, and a larger beam experiment like Planck has multiple clusters per beam 60% of the time. We explore the contribution of unresolved halos and unbound gas to the SZE signature at the maximum decrement. We find that there is a contribution from gas outside clusters of ~16% per object on average for upcoming surveys. This adds both bias and scatter to the deduced value of the integrated SZE, adding difficulty in accurately calibrating a cluster Y-M relationship. Finally, we find that in images where objects with M > 5x10^{13} M_{\odot} have had their SZE signatures removed, roughly a third of the total SZE flux still remains. This gas exists at least partially in the Warm Hot Intergalactic Medium (WHIM), and will possibly be detectable with the upcoming generation of SZE surveys.Comment: 14 pages, 13 figures, version accepted to ApJ. Major revisions mad

    Bryophytes of Uganda : 6., new and additional records, 3.

    Get PDF
    12 hepatics and 32 mosses are reported new to Uganda, 1 moss being also new to Africa, and 1 liverwort new to mainland Africa. Ectropothecium plumigerum (Broth.) HedenĂ€s is a new combination (basionym: Isopterygium plumigerum Broth.) with a new synonym Taxicaulis plumirameus MĂŒll.Hal. nom. nud., and Taxiphyllum maniae (Renauld & Paris) M. Fleisch. is a new synonym of Taxiphyllum taxirameum (Mitt.) M.Fleisch. Three mosses are removed from the Uganda list

    Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays

    Full text link
    We present new results characterizing cosmological shocks within adaptive mesh refinement N-Body/hydrodynamic simulations that are used to predict non-thermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of ~3. We then apply our new technique to a large, (512 Mpc/h)^3, cosmological volume and study the shock Mach number (M) distribution as a function of pre-shock temperature, density, and redshift. Because of the large volume of the simulation, we have superb statistics that results from having thousands of galaxy clusters. We find that the Mach number evolution can be interpreted as a method to visualize large-scale structure formation. Shocks with Mach<5 typically trace mergers and complex flows, while 520 generally follow accretion onto filaments and galaxy clusters, respectively. By applying results from nonlinear diffusive shock acceleration models using the first-order Fermi process, we calculate the amount of kinetic energy that is converted into cosmic ray protons. The acceleration of cosmic ray protons is large enough that in order to use galaxy clusters as cosmological probes, the dynamic response of the gas to the cosmic rays must be included in future numerical simulations.Comment: 15 pages, 14 figures, Accepted to ApJ, minor changes mad

    Comparing AMR and SPH Cosmological Simulations: I. Dark Matter & Adiabatic Simulations

    Full text link
    We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: The SPH code GADGET, and the Eulerian AMR code ENZO. Both codes represent dark matter with the N-body method, but use different gravity solvers and fundamentally different approaches to hydrodynamics. We compare the GADGET `entropy conserving' SPH formulation with two ENZO methods: The piecewise parabolic method (PPM), and the artificial viscosity-based scheme used in the ZEUS code. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also adiabatic baryonic gas. The dark matter-only runs agree generally quite well, provided ENZO is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This is due to the hierarchical particle-mesh method used to compute gravitational forces in ENZO, which tends to deliver lower force resolution than the tree algorithm of GADGET. At comparable force resolution, we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in ENZO. In simulations that include adiabatic gas dynamics, we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are some significant differences at lower overdensities. We argue that these discrepancies are presumably owing to differences in the shock-capturing abilities of the different methods. In particular, ZEUS hydro leads to some unphysical heating at early times in preshock regions. Overall, the GADGET hydro results are bracketed by those for ENZO/ZEUS and ENZO/PPM. (abridged)Comment: 45 pages, 17 figures. ApJ, in press. This paper has been significantly revised after referee comments and several sections have been adde

    Implicit and explicit COVID‐19‐vaccine harmfulness/helpfulness associations predict vaccine beliefs, intentions, and behaviors

    Get PDF
    We investigated the role of implicit and explicit associations between harm and COVID-19 vaccines using a large sample (N = 4668) of online volunteers. The participants completed a brief implicit association test and explicit measures to evaluate the extent to which they associated COVID-19 vaccines with concepts of harmfulness or helpfulness. We examined the relationship between these harmfulness/helpfulness COVID-19 vaccine associations and vaccination status, intentions, beliefs, and behavior. We found that stronger implicit and explicit associations that COVID-19 vaccines are helpful relate to vaccination status and beliefs about the COVID-19 vaccine. That is, stronger pro-helpful COVID-19 vaccine associations, both implicitly and explicitly, related to greater intentions to be vaccinated, more positive beliefs about the vaccine, and greater vaccine uptake

    The Role of Uncertainty, Worry, and Control in Well-Being: Evidence From the COVID-19 Outbreak and Pandemic in U.S. and China

    Get PDF
    Uncertainty about the future often leads to worries about what the future will bring, which can have negative consequences for health and well-being. However, if worry can act as a motivator to promote efforts to prevent undesirable future outcomes, those negative consequences of worry may be mitigated. In this article, we apply a novel model of uncertainty, worry, and perceived control to predict psychological and physical well-being among four samples collected in China (Study 1; during the early COVID-19 outbreak in China) and the United States (Studies 2–4, during 4 weeks in May 2020, 4 weeks in November 2020, and crosssectionally between April and November 2020). Grounded in the feeling-is-for-doing approach to emotions, we hypothesized (and found) that uncertainty about one’s COVID-19 risk would predict greater worry about the virus and one’s risk of contracting it, and that greater worry would in turn predict poorer well-being. We also hypothesized, and found somewhat mixed evidence, that perceptions of control over 1’s COVID-19 risk moderated the relationship between worry and well-being such that worry was related to diminished well-being when people felt they lacked control over their risk for contracting the virus. This study is one of the first to demonstrate an indirect path from uncertainty to well-being via worry and to demonstrate the role of control in moderating whether uncertainty and worry manifest in poor well-being

    Signatures of minor mergers in the Milky Way disc I: The SEGUE stellar sample

    Full text link
    It is now known that minor mergers are capable of creating structure in the phase-space distribution of their host galaxy's disc. In order to search for such imprints in the Milky Way, we analyse the SEGUE F/G-dwarf and the Schuster et al. (2006) stellar samples. We find similar features in these two completely independent stellar samples, consistent with the predictions of a Milky Way minor-merger event. We next apply the same analyses to high-resolution, idealised N-body simulations of the interaction between the Sagittarius dwarf galaxy and the Milky Way. The energy distributions of stellar particle samples in small spatial regions in the host disc reveal strong variations of structure with position. We find good matches to the observations for models with a mass of Sagittarius' dark matter halo progenitor âȘ…1011\lessapprox 10^{11} M⊙_{\odot}. Thus, we show that this kind of analysis could be used to provide unprecedentedly tight constraints on Sagittarius' orbital parameters, as well as place a lower limit on its mass.Comment: 14 pages, 9 figures, 2 tables. Revised to reflect accepted versio

    Comment on Spracklandus Hoser, 2009 (Reptilia, Serpentes, ELAPIDAE): request for confirmation of the availability of the generic name and for the nomenclatural validation of the journal in which it was published (Case 3601; see BZN 70: 234–237; 71: 30–38, 133–135, 181–182, 252–253)

    Get PDF
    • 

    corecore