5,258 research outputs found

    Mean curvature flow and quasilocal mass for two-surfaces in Hamiltonian General Relativity

    Full text link
    A family of quasilocal mass definitions that includes as special cases the Hawking mass and the Brown-York ``rest mass'' energy is derived for spacelike 2-surfaces in spacetime. The definitions involve an integral of powers of the norm of the spacetime mean curvature vector of the 2-surface, whose properties are connected with apparent horizons. In particular, for any spacelike 2-surface, the direction of mean curvature is orthogonal (dual in the normal space) to a unique normal direction in which the 2-surface has vanishing expansion in spacetime. The quasilocal mass definitions are obtained by an analysis of boundary terms arising in the gravitational ADM Hamiltonian on hypersurfaces with a spacelike 2-surface boundary, using a geometric time-flow chosen proportional to the dualized mean curvature vector field at the boundary surface. A similar analysis is made choosing a geometric rotational flow given in terms of the twist covector of the dual pair of mean curvature vector fields, which leads to a family of quasilocal angular momentum definitions involving the squared norm of the twist. The large sphere limit of these definitions is shown to yield the ADM mass and angular momentum in asymptotically flat spacetimes, while at apparent horizons a quasilocal version of the Gibbons-Penrose inequality is derived. Finally, some results concerning positivity are proved for the quasilocal masses, motivated by consideration of spacelike mean curvature flow of 2-surfaces in spacetime.Comment: Revised version, includes an analysis of null flows with applications to mass and angular momentum for apparent horizon

    Limit curve theorems in Lorentzian geometry

    Full text link
    The subject of limit curve theorems in Lorentzian geometry is reviewed. A general limit curve theorem is formulated which includes the case of converging curves with endpoints and the case in which the limit points assigned since the beginning are one, two or at most denumerable. Some applications are considered. It is proved that in chronological spacetimes, strong causality is either everywhere verified or everywhere violated on maximizing lightlike segments with open domain. As a consequence, if in a chronological spacetime two distinct lightlike lines intersect each other then strong causality holds at their points. Finally, it is proved that two distinct components of the chronology violating set have disjoint closures or there is a lightlike line passing through each point of the intersection of the corresponding boundaries.Comment: 25 pages, 1 figure. v2: Misprints fixed, matches published versio

    Magnification relations for Kerr lensing and testing Cosmic Censorship

    Full text link
    A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m >1 indicates a naked singularity, a most interesting application would be a test of the Cosmic Censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.Comment: 13 pages, version 2: references added, minor changes. To appear in Phys. Rev.

    Painleve-Gullstrand Coordinates for the Kerr Solution

    Full text link
    We construct a coordinate system for the Kerr solution, based on the zero angular momentum observers dropped from infinity, which generalizes the Painleve-Gullstrand coordinate system for the Schwarzschild solution. The Kerr metric can then be interpreted as describing space flowing on a (curved) Riemannian 3-manifold. The stationary limit arises as the set of points on this manifold where the speed of the flow equals the speed of light, and the horizons as the set of points where the radial speed equals the speed of light. A deeper analysis of what is meant by the flow of space reveals that the acceleration of free-falling objects is generally not in the direction of this flow. Finally, we compare the new coordinate system with the closely related Doran coordinate system.Comment: 6 pages; v2: new section, matches final published version; v3: sign error in the expression of the function delta correcte

    On certain surfaces in the Euclidean space E3{\mathbb{E}}^3

    Full text link
    In the present paper we classify all surfaces in \E^3 with a canonical principal direction. Examples of these type of surfaces are constructed. We prove that the only minimal surface with a canonical principal direction in the Euclidean space E3{\mathbb{E}}^3 is the catenoid.Comment: 13 Latex page

    Integration of the Friedmann equation for universes of arbitrary complexity

    Full text link
    An explicit and complete set of constants of the motion are constructed algorithmically for Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) models consisting of an arbitrary number of non-interacting species. The inheritance of constants of the motion from simpler models as more species are added is stressed. It is then argued that all FLRW models admit what amounts to a unique candidate for a gravitational epoch function (a dimensionless scalar invariant derivable from the Riemann tensor without differentiation which is monotone throughout the evolution of the universe). The same relations that lead to the construction of constants of the motion allow an explicit evaluation of this function. In the simplest of all models, the Λ\LambdaCDM model, it is shown that the epoch function exists for all models with Λ>0\Lambda > 0, but for almost no models with Λ≤0\Lambda \leq 0.Comment: Final form to appear in Physical Review D1

    Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces

    Full text link
    We compute the Green's function for the Hodge Laplacian on the symmetric spaces M\times\Sigma, where M is a simply connected n-dimensional Riemannian or Lorentzian manifold of constant curvature and \Sigma is a simply connected Riemannian surface of constant curvature. Our approach is based on a generalization to the case of differential forms of the method of spherical means and on the use of Riesz distributions on manifolds. The radial part of the Green's function is governed by a fourth order analogue of the Heun equation.Comment: 18 page

    Biharmonic Riemannian submersions from 3-manifolds

    Full text link
    An important theorem about biharmonic submanifolds proved independently by Chen-Ishikawa [CI] and Jiang [Ji] states that an isometric immersion of a surface into 3-dimensional Euclidean space is biharmonic if and only if it is harmonic (i.e, minimal). In a later paper [CMO2], Cadeo-Monttaldo-Oniciuc shown that the theorem remains true if the target Euclidean space is replaced by a 3-dimensional hyperbolic space form. In this paper, we prove the dual results for Riemannian submersions, i.e., a Riemannian submersion from a 3-dimensional space form of non-positive curvature into a surface is biharmonic if and only if it is harmonic

    The Dirac operator on generalized Taub-NUT spaces

    Full text link
    We find sufficient conditions for the absence of harmonic L2L^2 spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page
    • …
    corecore