4 research outputs found

    INHALE: the impact of using FilmArray Pneumonia Panel molecular diagnostics for hospital-acquired and ventilator-associated pneumonia on antimicrobial stewardship and patient outcomes in UK Critical Care—study protocol for a multicentre randomised controlled trial

    Get PDF
    Background: Hospital-acquired and ventilator-associated pneumonias (HAP and VAP) are common in critical care and can be life-threatening. Rapid microbiological diagnostics, linked to an algorithm to translate their results into antibiotic choices, could simultaneously improve patient outcomes and antimicrobial stewardship. Methods: The INHALE Randomised Controlled Trial is a multi-centre, parallel study exploring the potential of the BioFire FilmArray molecular diagnostic to guide antibiotic treatment of HAP/VAP in intensive care units (ICU); it identifies pathogens and key antibiotic resistance in around 90 min. The comparator is standard care whereby the patient receives empirical antibiotics until microbiological culture results become available, typically after 48–72 h. Adult and paediatric ICU patients are eligible if they are about to receive antibiotics for a suspected lower respiratory infection (including HAP/VAP) for the first time or a change in antibiotic because of a deteriorating clinical condition. Breathing spontaneously or intubated, they must have been hospitalised for 48 h or more. Patients are randomised 1:1 to receive either antibiotics guided by the FilmArray molecular diagnostic and its trial-based prescribing algorithm or standard care, meaning empirical antibiotics based on local policy, adapted subsequently based upon local microbiology culture results. Co-primary outcomes are (i) non-inferiority in clinical cure of pneumonia at 14 days post-randomisation and (ii) superiority in antimicrobial stewardship at 24 h post-randomisation (defined as % of patients on active and proportionate antibiotics). Secondary outcomes include further stewardship reviews; length of ICU stay; co-morbidity indicators, including septic shock, change in sequential organ failure assessment scores, and secondary pneumonias; ventilator-free days; adverse events over 21 days; all-cause mortality; and total antibiotic usage. Both cost-effectiveness of the molecular diagnostic-guided therapy and behavioural aspects determining antibiotic prescribing are being explored. A sample size of 552 will be required to detect clinically significant results with 90% power and 5% significance for the co-primary outcomes. Discussion: This trial will test whether the potential merits of rapid molecular diagnostics for pathogen and resistance detection in HAP/VAP are realised in patient outcomes and/or improved antibiotic stewardship. Trial registration: ISRCTN Registry ISRCTN16483855. Retrospectively registered on 15 July 2019

    Intensivists’ beliefs about rapid multiplex molecular diagnostic testing and its potential role in improving prescribing decisions and antimicrobial stewardship: a qualitative study

    Get PDF
    Background Rapid molecular diagnostic tests to investigate the microbial aetiology of pneumonias may improve treatment and antimicrobial stewardship in intensive care units (ICUs). Clinicians’ endorsement and uptake of these tests is crucial to maximise engagement; however, adoption may be impeded if users harbour unaddressed concerns or if device usage is incompatible with local practice. Accordingly, we strove to identify ICU clinicians’ beliefs about molecular diagnostic tests for pneumonias before implementation at the point-of-care. Methods We conducted semi-structured interviews with 35 critical care doctors working in four ICUs in the United Kingdom. A clinical vignette depicting a fictitious patient with signs of pneumonia was used to explore clinicians’ beliefs about the importance of molecular diagnostics and their concerns. Data were analysed thematically. Results Clinicians’ beliefs about molecular tests could be grouped into two categories: perceived potential of molecular diagnostics to improve antibiotic prescribing (Molecular Diagnostic Necessity) and concerns about how the test results could be implemented into practice (Molecular Diagnostic Concerns). Molecular Diagnostic Necessity stemmed from beliefs that positive results would facilitate targeted antimicrobial therapy; that negative results would signal the absence of a pathogen, and consequently that having the molecular diagnostic results would bolster clinicians’ prescribing confidence. Molecular Diagnostic Concerns included unfamiliarity with the device’s capabilities, worry that it would detect non-pathogenic bacteria, uncertainty whether it would fail to detect pathogens, and discomfort with withholding antibiotics until receiving molecular test results. Conclusions Clinicians believed rapid molecular diagnostics for pneumonias were potentially important and were open to using them; however, they harboured concerns about the tests’ capabilities and integration into clinical practice. Implementation strategies should bolster users’ necessity beliefs while reducing their concerns; this can be accomplished by publicising the tests’ purpose and benefits, identifying and addressing clinicians’ misconceptions, establishing a trial period for first-hand familiarisation, and emphasising that, with a swift (e.g., 60–90 min) test, antibiotics can be started and refined after molecular diagnostic results become available
    corecore