4,926 research outputs found
A composition theorem for the Fourier Entropy-Influence conjecture
The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96]
seeks to relate two fundamental measures of Boolean function complexity: it
states that holds for every Boolean function , where
denotes the spectral entropy of , is its total influence,
and is a universal constant. Despite significant interest in the
conjecture it has only been shown to hold for a few classes of Boolean
functions.
Our main result is a composition theorem for the FEI conjecture. We show that
if are functions over disjoint sets of variables satisfying the
conjecture, and if the Fourier transform of taken with respect to the
product distribution with biases satisfies the conjecture,
then their composition satisfies the conjecture. As
an application we show that the FEI conjecture holds for read-once formulas
over arbitrary gates of bounded arity, extending a recent result [OWZ11] which
proved it for read-once decision trees. Our techniques also yield an explicit
function with the largest known ratio of between and
, improving on the previous lower bound of 4.615
Estimating Variable Returns to Scale Production Frontiers with Alternative Stochastic Assumptions
A stochastic production frontier model is formulated within the generalized production function framework popularized by Zellner and Revankar (1969) and Zellner and Ryu (1998). This framework is convenient for parsimonious modeling of a production function with variable returns to scale specified as a function of output. Two alternatives for introducing the stochastic inefficiency term and the stochastic error are considered, one where they are appended to the existing equation for the production relationship and one where the existing equation is solved for the log of output before the stochastic terms are added. The latter alternative is novel, but it is needed to preserve the usual definition of firm efficiency. The two alternative stochastic assumptions are considered in conjunction with two returns to scale functions, making a total of four models that are considered. A Bayesian framework for estimating all four models is described. The techniques are applied to USDA state-level data on agricultural output and four inputs. Posterior distributions for all parameters, firm efficiencies and the efficiency rankings of firms are obtained. The sensitivity of the results to the returns to scale specification and to the stochastic specification is examined.
The Cyber Physical Implementation of Cloud Manufactuirng Monitoring Systems
AbstractThe rise of the industrial internet has been envisaged as a key catalyst for creating the intelligent manufacturing plant of the future through enabling open data distribution for cloud manufacturing. The context supporting these systems has been defined by Service Oriented Architectures (SOA) that facilitate data resource and computational functions as services available on a network. SOA has been at the forefront EU research over the past decade and several industrially implemented SOA technologies exist on the manufacturing floor. However it is still unclear whether SOA can meet the multi-layered requirements present within state-of-the-art manufacturing Cyber Physical Systems (CPS). The focus of this research is to identify the capability of SOA to be implemented at different execution layers present in a manufacturing CPS. The state-of-the-art for manufacturing CPS is represented by the ISA-95 standard and is correlated with different temporal analysis scales, and manufacturing computational requirements. Manufacturing computational requirements are identified through a review of open and closed loop machine control orientations, and continuous and discrete control methods. Finally the Acquire Recognise Cluster (ARC) SOA for reconfigurable manufacturing process monitoring systems is reviewed, to provide a topological view of data flow within a field level manufacturing SOA
Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players
We present the concept of fiber-flux density for locally quantifying white
matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g.,
fractional anisotropy) with fiber-flux measurements, we define new local
descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each
descriptor throughout fiber bundles allows along-tract coupling of a specific
diffusion measure with geometrical properties, such as fiber orientation and
coherence. A key step in the proposed framework is the construction of an FFDD
dissimilarity measure for sub-voxel alignment of fiber bundles, based on the
fast marching method (FMM). The obtained aligned WM tract-profiles enable
meaningful inter-subject comparisons and group-wise statistical analysis. We
demonstrate our method using two different datasets of contact sports players.
Along-tract pairwise comparison as well as group-wise analysis, with respect to
non-player healthy controls, reveal significant and spatially-consistent FFDD
anomalies. Comparing our method with along-tract FA analysis shows improved
sensitivity to subtle structural anomalies in football players over standard FA
measurements
Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications
This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or material
First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films
We performed first - principles relativistic full-potential linearized
augmented plane wave calculations for strained tetragonal ferromagnetic
La(Ba)MnO with an assumed experimental structure of thin strained
tetragonal LaCaMnO (LCMO) films grown on SrTiO[001]
and LaAlO[001] substrates. The calculated uniaxial magnetic anisotropy
energy (MAE) values, are in good quantitative agreement with experiment for
LCMO films on SrTiO substrate. We also analyze the applicability of linear
magnetoelastic theory for describing the stain dependence of MAE, and estimate
magnetostriction coefficient .Comment: Talk given at APS99 Meeting, Atlanta, 199
Thermodynamic metrics and optimal paths
A fundamental problem in modern thermodynamics is how a molecular-scale
machine performs useful work, while operating away from thermal equilibrium
without excessive dissipation. To this end, we derive a friction tensor that
induces a Riemannian manifold on the space of thermodynamic states. Within the
linear-response regime, this metric structure controls the dissipation of
finite-time transformations, and bestows optimal protocols with many useful
properties. We discuss the connection to the existing thermodynamic length
formalism, and demonstrate the utility of this metric by solving for optimal
control parameter protocols in a simple nonequilibrium model.Comment: 5 page
The Physicians’ Practice Assessment Questionnaire on asthma and COPD
SummaryWe describe a new tool, the Physicians’ Practice Assessment Questionnaire (PPAQ), designed for the global self-assessment of implementation of asthma and COPD guidelines, as determined by the percentage of patients in whom physicians estimate that they implement guidelines key recommendations. Some of its properties were assessed by a group of 47 general practitioners (GPs), and test–retest data were obtained in repeating the questionnaire at a 5-week interval without intervention in a sub-group of 28 practitioners. Answers to the various questions were globally reproducible. The lowest scores (recommendations implemented in less than 50% of their patients) were: 1) for both asthma and COPD: referral for patient education, provision of a written action plan and regular assessment of inhaler technique, 2) for asthma: referral to a specialist for difficult to control asthma or uncertain diagnosis, and 3) for COPD: assessment of lung function and disability according to specific criteria and referral to a rehabilitation program. The analysis showed sufficient internal consistency for both questionnaires (Cronbach alphas 0.7617 for asthma and 0.8317 for COPD). Pearson’s correlations indicated good test–retest (r = 0.6421, p = 0.0002 for asthma; r = 0.6801, p < 0.0001 for COPD). In conclusion, the PPAQ is a new tool to assess implementation of asthma and COPD guidelines; it has the potential to identify care gaps that can be specifically targeted for intervention
Mistimed malaria parasites re‐synchronise with host feeding‐fasting rhythms by shortening the duration of intra‐erythrocytic development
AIMS: Malaria parasites exhibit daily rhythms in the intra‐erythrocytic development cycle (IDC) that underpins asexual replication in the blood. The IDC schedule is aligned with the timing of host feeding‐fasting rhythms. When the IDC schedule is perturbed to become mismatched to host rhythms, it readily reschedules but it is not known how. METHODS: We intensively follow four groups of infections that have different temporal alignments between host rhythms and the IDC schedule for 10 days, before and after the peak in asexual densities. We compare how the duration, synchrony and timing of the IDC differs between parasites in control infections and those forced to reschedule by 12 hours and ask whether the density of parasites affects the rescheduling process. RESULTS AND CONCLUSIONS: Our experiments reveal parasites shorten the IDC duration by 2–3 hours to become realigned to host feeding‐fasting rhythms with 5–6 days, in a density‐independent manner. Furthermore, parasites are able to reschedule without significant fitness costs for them or their hosts. Understanding the extent of, and limits on, plasticity in the IDC schedule may reveal targets for novel interventions, such as drugs to disrupt IDC regulation and preventing IDC dormancy conferring tolerance to existing drugs
- …