3,407 research outputs found

    A quantum violation of the second law?

    Get PDF
    An apparent violation of the second law of thermodynamics occurs when an atom coupled to a zero-temperature bath, being necessarily in an excited state, is used to extract work from the bath. Here the fallacy is that it takes work to couple the atom to the bath and this work must exceed that obtained from the atom. For the example of an oscillator coupled to a bath described by the single relaxation time model, the mean oscillator energy and the minimum work required to couple the oscillator to the bath are both calculated explicitly and in closed form. It is shown that the minimum work always exceeds the mean oscillator energy, so there is no violation of the second law

    Balmer and Metal Absorption Feature Gradients in M32

    Full text link
    Spectra from MDM Observatory are used to assess Lick/IDS feature strength gradients inside the half-light radius of the compact Local Group elliptical galaxy M32. All but a few (of 24 measured) indices show a statistically significant gradient. Comparing with models, the index gradients indicate a mean age and abundance gradient in the sense that the nucleus is a factor of 2.5 younger and a factor of 0.3 dex more metal-rich than at 1 effective radius. This conclusion is only weakly dependent on which index combinations are used and is robust to high accuracy. Stars near the M32 nucleus have a mean age and heavy element abundance [M/H] of (4.7 Gyr, +0.02), judging from models by Worthey with variable abundance ratios. This result has very small formal random errors, although, of course, there is significant age-metallicity degeneracy along an (age, abundance) line segment from (5.0 Gyr, 0.00) to (4.5 Gyr, +0.05). An abundance pattern of [C/M]=+0.077, [N/M]=-0.13, [Mg/M]=-0.18, [Fe/M]~0.0, and [Na/M]=+0.12 is required to fit the feature data, with a fitting precision of about 0.01 dex. Model uncertainties make the accuracies of these values at least twice the magnitude of the precision. Forcing scaled-solar abundances does not change the age very much, but it increases the rms goodness of model-data fit by a factor of 3 and broadens the allowed range of age to ±1\pm 1 Gyr. The overall abundance pattern contrasts with larger elliptical galaxies, in which all measurable lighter elements are enhanced relative to iron and calcium.Comment: 23 pages, 9 figures, Astronomical Journal, in pres

    Consistency of a Causal Theory of Radiative Reaction with the Optical Theorem

    Get PDF
    The Abraham-Lorentz-Dirac equation for a point electron, while suffering from runaway solutions and an acausal response to external forces, is compatible with the optical theorem. We show that a theory of radiative reaction that allows for a finite charge distribution is not only causal and free of runaway solutions, but is also consistent with the optical theorem and the standard formula for the Rayleigh scattering cross section.Comment: 4 pages, 2 figure

    Rotation and Spin in Physics

    Full text link
    We delineate the role of rotation and spin in physics, discussing in order Newtonian classical physics, special relativity, quantum mechanics, quantum electrodynamics and general relativity. In the latter case, we discuss the generalization of the Kepler formula to post-Newtonian order (c2(c^{-2}) including spin effects and two-body effects. Experiments which verify the theoretical results for general relativistic spin-orbit effects are discussed as well as efforts being made to verify the spin-spin effects

    Anomalous diffusion in quantum Brownian motion with colored noise

    Get PDF
    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading

    Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas

    Full text link
    In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of nonrelativistic and relativistic degeneracies exist. Furthermore, it is remarked that first-order corrections due to such interactions (which are proportional to the fine-structure constant) are significant on soliton dynamics in nonrelativistic plasma degeneracy regime rather than relativistic one. In the relativistic degeneracy regime, however, these effects become less important and the electron quantum-tunneling and Pauli-exclusion dominate the nonlinear wave dynamics. Hence, application of non-interacting Fermi-Dirac QHD model to study the nonlinear wave dynamics in quantum plasmas such as compact stars is most appropriate for the relativistic degeneracy regime

    Quantum collapse in ground-state Fermi-Dirac-Landau plasmas

    Full text link
    It is revealed that in a relativistically degenerate dense highly-magnetized electron-ion plasma the effective quantum-potential due to the total quantum-force acting on fermions may cancel-out causing a quantum transverse collapse in the ground-state Fermi-Dirac-Landau (GSFDL) plasma. The condition for the plasma transverse collapse is found to be restricted to the minimum relativistic degeneracy parameter and minimum impressed magnetic field strength values satisfied for many superdense astrophysical objects such as white dwarfs and neutron stars. In such plasmas, the magnetization pressure is shown to cancel the lateral electron degeneracy pressure counteracting the existing gravitational pressure. Furthermore, using the Sagdeev pseudopotential method in the framework of quantum magnetohydrodynamics (QMHD) model including spin magnetization it is confirmed that the quantum pressure due to spin-orbit polarization and the electron relativistic degeneracy has significant effects on the existence criteria and the propagation of localized magnetosonic density excitations in GSFDL plasmas. Current findings can have important implications for the density excitations mechanism and gravitational collapse of the highly magnetized astrophysical relativistically dense objects such as white-dwarfs, neutron stars, magnetars and pulsars.Comment: To be Published in Journal Physics of Plasma

    Intermittent magnetic field excitation by a turbulent flow of liquid sodium

    Get PDF
    The magnetic field measured in the Madison Dynamo Experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.Comment: 5 pages, 7 figure

    Orbital Ferromagnetism and Quantum Collapse in Stellar Plasmas

    Full text link
    The possibility of quantum collapse and characteristics of nonlinear localized excitations is examined in dense stars with Landau orbital ferromagnetism in the framework of conventional quantum magnetohydrodynamics (QMHD) model including Bohm force and spin-orbit polarization effects. Employing the concepts of effective potential and Sagdeev pseudopotential, it is confirmed that the quantum collapse and Landau orbital ferromagnetism concepts are consistent with the magnetic field and mass-density range present in some white dwarf stars. Furthermore, the value of ferromagnetic-field found in this work is about the same order of magnitude as the values calculated earlier. It is revealed that the magnetosonic nonlinear propagations can behave much differently in the two distinct non-relativistic and relativistic degeneracy regimes in a ferromagnetic dense astrophysical object. Current findings should help to understand the origin of the most important mechanisms such as gravitational collapse and the high magnetic field present in many compact stars.Comment: To appear in journal Physics of Plasma
    corecore