25 research outputs found

    Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems

    Get PDF
    Rational design of supramolecular systems for application in photonic devices requires a clear understanding of both the mechanism of energy and electron transfer processes and how these processes can be manipulated. Central to achieving these goals is a detailed picture of their electronic structure and of the interaction between the constituent components. We review several approaches that have been taken towards gaining such understanding, with particular focus on the physical techniques employed. In the discussion, case studies are introduced to illustrate the key issues under consideration

    Ground vs. excited state interaction in ruthenium-thienyl dyads:implications for through bond interactions in multicomponent systems

    Get PDF
    The vibrational and photophysical properties of mononuclear ruthenium(II) and ruthenium(III) polypyridyl complexes based on the ligands 2-(5'-(pyridin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, 2-(5'-(pyrazin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, are reported. The effect of the introduction of the non-innocent thiophene group on the properties of the triazole based ruthenium(II) complex is examined. The pH sensitive 1,2,4-triazole group, although influenced by the electron withdrawing nature of the thiophene group, does not facilitate excited state interaction of the thiophene and Ru(II) centre. Deuteriation and DFT calculations are employed to enable a deeper understanding of the interaction between the two redox-active centres and rationalise the difference between the extent of ground and excited state interaction in this simple dyad. The results obtained provide considerable evidence in support of earlier studies examining differences in ground and excited state interaction in multinuclear thiophene-bridged systems, in particular with respect to HOMO- and LUMO- mediated superexchange interaction processes.

    Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems

    No full text
    Rational design of supramolecular systems for application in photonic devices requires a clear understanding of both the mechanism of energy and electron transfer processes and how these processes can be manipulated. Central to achieving these goals is a detailed picture of their electronic structure and of the interaction between the constituent components. We review several approaches that have been taken towards gaining such understanding, with particular focus on the physical techniques employed. In the discussion, case studies are introduced to illustrate the key issues under consideration.

    BIOINFORMATICS PYCHEM: A Multivariate Analysis Package for Python

    No full text
    Summary: We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules, and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines
    corecore