2 research outputs found

    Enhanced VWF clearance in low VWF pathogenesis: Limitations of the VWFpp/VWF:Ag ratio and clinical significance

    Get PDF
    Increased von Willebrand factor (VWF) clearance plays a key role in the pathogenesis of type 1 and type 2 von Willebrand disease (VWD). However, the pathological mechanisms involved in patients with mild to moderate reductions in plasma VWF:Ag (range, 30-50 IU/dL; low VWF) remain poorly understood. In this study, we investigated the hypothesis that enhanced VWF clearance may contribute to the pathobiology of low VWF. Patients with low VWF were recruited to the LoVIC study after ethics approval and receipt of informed consent. Desmopressin was administered IV in 75 patients, and blood samples were drawn at baseline and at the 1-hour and 4-hour time points. As defined by recent ASH/ISTH/NHF/WFH guidelines, 20% of our low-VWF cohort demonstrated significantly enhanced VWF clearance. Importantly, from a clinical perspective, this enhanced VWF clearance was seen after desmopressin infusion, but did not affect the steady-state VWF propeptide (VWFpp)-to-VWF antigen (VWF:Ag) ratio (VWFpp/VWF:Ag) in most cases. The discrepancy between the VWFpp/VWF:Ag ratio and desmopressin fall-off rates in patients with mild quantitative VWD may have reflected alteration in VWFpp clearance kinetics. Finally, bleeding scores were significantly lower in patients with low VWF with enhanced VWF clearance, compared with those in whom reduced VWF biosynthesis represented the principle pathogenic mechanism. This trial was registered at http://www.clinicaltrials.gov as #NCT03167320

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1^{−1} (9.9 ± 0.5 GtC yr−1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr−1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr−1^{−1} (2.5 ± 0.1 ppm yr−1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr−1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr−1^{−1}, with a BIM_{IM} of −0.6 GtC yr−1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)
    corecore