10 research outputs found

    Efficacy of Cold Plasma for Direct Deposition of Antibiotics as a Novel Approach for Localized Delivery and Retention of Effect

    Get PDF
    Antimicrobial coating of medical devices has emerged as a potentially effective tool to prevent or ameliorate device-related infections. In this study the plasma deposition process for direct deposition of pharmaceutical drugs on to a range of surfaces and the retention of structure function relationship and antimicrobial efficacy against mono-species biofilms were investigated. Two selected sample antibiotics—ampicillin and gentamicin, were deposited onto two types of surfaces—polystyrene microtiter plates and stainless steel coupons. The antimicrobial efficacy of the antibiotic-coated surfaces was tested against challenge populations of both planktonic and sessile Escherichia coli and Pseudomonas aeruginosa, with responses monitored for up to 14 days. The plasma deposition process bonded the antibiotic to the surfaces, with localized retention of antibiotic activity. The antibiotics deposited on the test surfaces retained a good efficacy against planktonic cells, and importantly prevented biofilm formation of attached cells for up to 96 h. The antibiotic rapidly eluted from the surface of antibiotic-coated surfaces to the surrounding medium, with retention of effect in this surrounding milieu for up to 2 weeks. Control experiments established that there was no independent antimicrobial or growth promoting effect of the plasma deposition process, where there was no antibiotic in the helium plasma assisted delivery stream. Apart from the flexibility offered through deposition on material surfaces, there was no additive or destructive effect associated with the helium assisted plasma deposition process on the antibiotic. The plasma assisted process was a viable mean of coating clinically relevant materials and developing innovative functional materials with retention of antibiotic activity, without employing a linker or plasma modified polymer, thus minimizing bio-compatibility issues for medical device materials. This offers potential to prevent or control instrumented or non-permanent device associated infection localized to the surgical or implant site

    A Modified Surface on Titanium Deposited by a Blasting Process

    Get PDF
    Abstract : Hydroxyapatite (HA) coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastâ„¢, a novel blasting process has been used to successfully modify a titanium (V) substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only) and CoBlast (HA/abrasive) treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted) and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings

    Hospital Outcomes in Patients Hospitalized for COVID-19 Pneumonia: The Effect of SARS-CoV-2 Vaccination and Vitamin D Status

    Get PDF
    SARS-CoV-2 vaccination promises to improve outcomes for patients with COVID-19 pneumonia (most notably those with advanced age and at high risk for severe disease). Here, we examine serum 25-Hydroxyvitamin D (25(OH)D) status and outcomes in both old (\u3e70 years) and young vaccinated (n = 80) and unvaccinated (n = 91) subjects, who were hospitalized due to COVID- 19 pneumonia in a single center (Connolly Hospital Dublin). Outcomes included ICU admission and mortality. Serum 25(OH)D levels were categorized as D30 (/L), D40 (30–49.99 nmol/L) and D50 (50 nmol/L). In multivariate analyses, D30 was independently associated with ICU admission (OR: 6.87 (95% CI: 1.13–41.85) (p = 0.036)) and mortality (OR: 24.81 (95% CI: 1.57–392.1) (p = 0.023)) in unvaccinated patients, even after adjustment for major confounders including age, sex, obesity and pre-existing diabetes mellitus. While mortality was consistently higher in all categories of patients over 70 years of age, the highest observed mortality rate of 50%, seen in patients over 70 years with a low vitamin D state (D30), appeared to be almost completely corrected by either vaccination, or having a higher vitamin D state, i.e., mortality was 14% for vaccinated patients over 70 years with D30 and 16% for unvaccinated patients over 70 years with a 25(OH)D level greater than 30 nmol/L. We observe that high mortality from COVID-19 pneumonia occurs in older patients, especially those who are unvaccinated or have a low vitamin D state. Recent vaccination or having a high vitamin D status are both associated with reduced mortality, although these effects do not fully mitigate the mortality risk associated with advanced age

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Efficiency in Management and Economics: Implications for Benchmarking

    No full text
    Efficiency has different connotations and denotations in management, organizational behavior, and economics. This article explores different economic and organizational orientations that have given rise to alternative definitions with the hope that better understanding of these perspectives will improve terminology and theory building

    Efficiency in Management and Economics: Implications for Benchmarking

    No full text
    Efficiency has different connotations and denotations in management, organizational behavior, and economics. This article explores different economic and organizational orientations that have given rise to alternative definitions with the hope that better understanding of these perspectives will improve terminology and theory building

    A pilot study of the duration of GP consultations in Ireland

    No full text
    General practitioner (GP)-led primary care is the linchpin of health care in Ireland. Reflecting international trends, there are increasing concerns about the sustainability of the current Irish GP service due to an increasing workload. Objective data on the duration of GP consultations are currently not available in Ireland. The objective of this pilot study is to demonstrate how the duration of consultations can be collected, using readily available administrative data. Software was developed to extract the duration of GP consultations using the opening and closing of electronic patient records associated with a GP consultation. GP practices (N =¿3) comprising 15 GPs were recruited from a university-affiliated research network. A retrospective analysis of GP consultations with patients with diabetes for the 9 years between 2010 and 2018 was used to assess the feasibility of using this system to measure the duration of consultations. The average duration of a consultation was 14.1¿min for the 9 years spanning 2010 to 2018. Patients had an average time between consultations of 99¿days. This pilot study confirms that an administrative data set can be utilised at negligible cost to monitor GP practice consultation workload over time. Our preliminary pilot data show that GP consultation durations among participating practices were longer than the 5-11.7¿min reported in the UK and show an increase over the period. Clearly, a larger number of practices and patients are required to substantiate this finding.This study has been supported by funding HRB RL/2013/16 for the study’s conduct and publication costs
    corecore