216 research outputs found
Desmoglein 3 acts as a potential oncogene in promoting cancer cell migration and invasion through regulating AP-1 and PKC dependent-Ezrin activation
Conference: 20th Anniversary Conference of the British-Skin-Foundation on Skin Deep - 20 Years of Research
Location: Roayl Coll Phys, London, ENGLAND
Date: OCT 13, 2016British Skin Fd
Epidermal grafting for wound healing: a review on the harvesting systems, the ultrastructure of the graft and the mechanism of wound healing
Epidermal grafting for wound healing involves the transfer of the epidermis from a healthy location to cover a wound. The structural difference of the epidermal graft in comparison to the split-thickness skin graft and full-thickness skin graft contributes to the mechanism of effect. While skin grafting is an epidermal transfer, little is known about the precise mechanism of wound healing by epidermal graft. This paper aims to explore the evolution of the epidermal graft harvesting system over the last five decades, the structural advantages of epidermal graft for wound healing and the current hypotheses on the mechanism of wound healing by epidermal graft. Three mechanisms are proposed: keratinocyte activation, growth factor secretion and reepithelialisation from the wound edge. We evaluate and explain how these processes work and integrate to promote wound healing based on the current in vivo and in vitro evidence. We also review the ongoing clinical trials evaluating the efficacy of epidermal graft for wound healing. The epidermal graft is a promising alternative to the more invasive conventional surgical techniques as it is simple, less expensive and reduces the surgical burden for patients in need of wound coverage
RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI’s cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI
MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma
Fight For Sight Fellowship, UK; National
Institute for Health Research (NIHR) Biomedical Research Centre based at Moorfields Eye Hospital NHSFoundation Trust and UCL Institute of Ophthalmology. J.W. and C.C. acknowledge support from Cancer
Research UK Centre of Excellence Award to Barts Cancer Centre [C16420/A18066
MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma
Sebaceous gland carcinoma (SGC) is a rare, but life-threatening condition with a predilection for the periocular region. Eyelid SGC can be broadly categorised into two subtypes, namely either nodular or pagetoid with the latter being more aggressive and requiring radical excision to save life. We have identified key altered microRNAs (miRNA) involved in SGC shared by both subtypes, hsa-miR-34a-5p and hsa-miR-16-5p. However, their gene targets BCL2 and MYC were differentially expressed with both overexpressed in pagetoid but unchanged in nodular suggesting different modes of action of these two miRNAs on BCL/MYC expression. Hsa-miR-150p is nodular-specifically overexpressed, and its target ZEB1 was significantly downregulated in nodular SGC suggesting a tumour suppressor role. Invasive pagetoid subtype demonstrated specific overexpression of hsa-miR-205 and downregulation of hsa-miR-199a. Correspondingly, miRNA gene targets, EZH2 (by hsa-miR-205) and CD44 (by hsa-miR-199a), were both overexpressed in pagetoid SGC. CD44 has been identified as a potential cancer stem cell marker in head and neck squamous cell carcinoma and its overexpression in pagetoid cells represents a novel treatment target. Aberrant miRNAs and their gene targets have been identified in both SGC subtypes, paving the way for better molecular understanding of these tumours and identifying new treatment targets
RNA-seq Analysis of Host and Viral Gene Expression Highlights Interaction between Varicella Zoster Virus and Keratinocyte Differentiation
Varicella zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.MRC grant G0700814 (http://www.mrc.ac.uk/index.htm), Wellcome Trust grant 081703/B/06/Z (http://www.wellcome.ac.uk), and NIH grants NS064022 and EY08098 (http://www.nih.gov)
Loss of the laminin subunit alpha-3 induces cell invasion and macrophage infiltration in cutaneous squamous cell carcinoma
Background Cutaneous squamous cell carcinoma (cSCC) is a common cancer that invades the dermis through the basement membrane. The role of the basement membrane in poorly differentiated cSCC is not well understood.Objectives To study the effect that loss of the laminin subunit alpha-3 (alpha 3) chain from the tumour microenvironment has on tumour invasion and inflammatory cell recruitment.Methods We examined the role of the basement membrane proteins laminin subunits alpha 3, beta 3 and gamma 2 in SCC invasion and inflammatory cell recruitment using immunohistochemistry, short hairpin RNA knockdown, RNA-Seq, mouse xenograft models and patient tumour samples.Results Analysis of SCC tumours and cell lines using antibodies specific to laminin chains alpha 3, beta 3 and gamma 2 identified a link between poorly differentiated SCC and reduced expression of laminin alpha 3 but not the other laminin subunits investigated. Knockdown of laminin alpha 3 increased tumour invasion both in vitro and in vivo. Western blot and immunohistochemical staining identified increased phosphorylated myosin light chain with loss of laminin alpha 3. Inhibition of ROCK (rho-associated protein kinase) but not Rac1 significantly reduced the invasive potential of laminin alpha 3 knockdown cells. Knockdown of laminin subunits alpha 3 and gamma 2 increased monocyte recruitment to the tumour microenvironment. However, only the loss of laminin alpha 3 correlated with increased tumour-associated macrophages both in xenografted tumours and in patient tumour samples.Conclusions These data provide evidence that loss of the laminin alpha 3 chain in cSCC has an effect on both the epithelial and immune components of cSCC, resulting in an aggressive tumour microenvironment
Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds
BACKGROUND: In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. [br/]METHODOLOGY/PRINCIPAL FINDINGS: We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, (3/4) views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1+/-0.7 vs. Exp 2: 5.2+/-1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. [br/]
CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was the most difficult task. These results call for studies exploring the mechanisms involved in face recognition allowing interspecies comparisons, including humans
- …