3,718 research outputs found

    Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations

    Full text link
    We present results on the formation of Pop III stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc3^3, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strong Lyman-Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in ("not so") small primordial halos with mass less than \sim 3 ×\times 107^7 M_\odot. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogues to the recently discovered luminous Ly α\alpha emitter CR7 (Sobral et al. 2015), which has been interpreted as a Pop III star cluster within or near a metal-enriched star forming galaxy. We find and discuss a system similar to this in some respects, however the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.Comment: 8 pages, 4 figures, 3 tables. Accepted by Ap

    Probing The Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations

    Full text link
    In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z258z \sim 25-8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M160017_{1600} \leq -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly-defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower star formation rates and thus lower UV luminosities; and (ii) the fact that halos with virial masses below 2×108\simeq 2 \times 10^8 M_\odot do not universally contain stars, with the fraction of halos containing stars dropping to zero at 7×106\simeq 7 \times 10^6 M_\odot. Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.Comment: 7 pages, 4 figures, accepted by The Astrophysical Journal Letter

    All-optical coherent population trapping with defect spin ensembles in silicon carbide

    Get PDF
    Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addressing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin S=1S=1 structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.Comment: 28 page document: Pages 1-14 main text (with 3 figures); pages 15-28 supplementary information (with 5 figues). v2 has minor correction

    6-(4-Fluorophenyl)-8-phenyl-2,3-dihydro-4H-imidazo[5,1-b][1,3]thiazin-4-one: an unusual [6-5] fused-ring system

    Get PDF
    The title compound, C₁₈H₁₃FN₂OS, is the first structural example of a [6-5] fused ring incorporating the 2,3-dihydro-4H-imidazo[5,1-b][1,3]thiazin-4-one molecular scaffold. The six-membered 2,3-dihydro-1,3-thiazin-4-one ring adopts an envelope conformation, with the S-CH₂ C atom displaced by 0.761 (2) Å from the five-atom plane (all within 0.05 Å of the mean plane). The imidazole ring is planar. The phenyl ring is twisted from coplanarity with the imidazole ring by 23.84 (5)° and the 4-fluorophenyl ring is twisted by 53.36 (6)°, due to a close C(aryl)-H...O=C contact with the thiazin-4-one carbonyl O atom. The primary intermolecular interaction involves a CH₂ group with the F atom [C...F = 3.256 (2) Å and C-H...F = 137°]

    Forming a Primordial Star in a Relic HII Region

    Full text link
    There has been considerable theoretical debate over whether photoionization and supernova feedback from the first Population III stars facilitate or suppress the formation of the next generation of stars. We present results from an Eulerian adaptive mesh refinement simulation demonstrating the formation of a primordial star within a region ionized by an earlier nearby star. Despite the higher temperatures of the ionized gas and its flow out of the dark matter potential wells, this second star formed within 23 million years of its neighbor's death. The enhanced electron fraction within the HII region catalyzes rapid molecular hydrogen formation that leads to faster cooling in the subsequent star forming halos than in the first halos. This "second generation" primordial protostar has a much lower accretion rate because, unlike the first protostar, it forms in a rotationally supported disk of approx. 10-100 solar masses. This is primarily due to the much higher angular momentum of the halo in which the second star forms. In contrast to previously published scenarios, such configurations may allow binaries or multiple systems of lower mass stars to form. These first high resolution calculations offer insight into the impact of feedback upon subsequent populations of stars and clearly demonstrate how primordial chemistry promotes the formation of subsequent generations of stars even in the presence of the entropy injected by the first stars into the IGM.Comment: 4 pages, 2 figures. Some revisions, including enhanced discussion of angular momentum issues. Asrophysical Journal, accepte
    corecore