110 research outputs found

    Connexins and the epithelial tissue barrier: a focus on Connexin 26

    Get PDF
    Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted

    Dysregulation of Connexin expression plays a pivotal role in psoriasis

    Get PDF
    Background: Psoriasis, a chronic inflammatory disease affecting 2–3% of the population, is characterised by epidermal hyperplasia, a sustained pro-inflammatory immune response and is primarily a T-cell driven disease. Previous work determined that Connexin26 is upregulated in psoriatic tissue. This study extends these findings. Methods: Biopsies spanning psoriatic plaque (PP) and non-involved tissue (PN) were compared to normal controls (NN). RNA was isolated and subject to real-time PCR to determine gene expression profiles, including GJB2/CX26, GJB6/CX30 and GJA1/CX43. Protein expression was assessed by immunohistochemistry. Keratinocytes and fibroblasts were isolated and used in 3D organotypic models. The pro-inflammatory status of fibroblasts and 3D cultures was assessed via ELISA and RnD cytokine arrays in the presence or absence of the connexin channel blocker Gap27. Results: Connexin26 expression is dramatically enhanced at both transcriptional and translational level in PP and PN tissue compared to NN (>100x). In contrast, CX43 gene expression is not affected, but the protein is post-translationally modified and accumulates in psoriatic tissue. Fibroblasts isolated from psoriatic patients had a higher inflammatory index than normal fibroblasts and drove normal keratinocytes to adopt a “psoriatic phenotype” in a 3D-organotypic model. Exposure of normal fibroblasts to the pro-inflammatory mediator peptidoglycan, isolated from Staphylococcus aureus enhanced cytokine release, an event protected by Gap27. Conclusion: dysregulation of the connexin26:43 expression profile in psoriatic tissue contributes to an imbalance of cellular events. Inhibition of connexin signalling reduces pro-inflammatory events and may hold therapeutic benefit

    Androgen receptor expression is required to ensure development of adult leydig cells and to prevent development of steroidogenic cells with adrenal characteristics in the mouse testis

    Get PDF
    Background: The interstitium of the mouse testis contains Leydig cells and a small number of steroidogenic cells with adrenal characteristics which may be derived from the fetal adrenal during development or may be a normal subset of the developing fetal Leydig cells. Currently it is not known what regulates development and/or proliferation of this sub-population of steroidogenic cells in the mouse testis. Androgen receptors (AR) are essential for normal testicular function and in this study we have examined the role of the AR in regulating interstitial cell development. Results: Using a mouse model which lacks gonadotropins and AR (hpg.ARKO), stimulation of luteinising hormone receptors in vivo with human chorionic gonadotropin (hCG) caused a marked increase in adrenal cell transcripts/protein in a group of testicular interstitial cells. hCG also induced testicular transcripts associated with basic steroidogenic function in these mice but had no effect on adult Leydig cell-specific transcript levels. In hpg mice with functional AR, treatment with hCG induced Leydig cell-specific function and had no effect on adrenal transcript levels. Examination of mice with cell-specific AR deletion and knockdown of AR in a mouse Leydig cell line suggests that AR in the Leydig cells are likely to regulate these effects. Conclusions: This study shows that in the mouse the androgen receptor is required both to prevent development of testicular cells with adrenal characteristics and to ensure development of an adult Leydig cell phenotype

    Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development

    Get PDF
    Climate change and coastal urbanization are driving the replacement of natural habitats with artificial structures and reclaimed land globally. These novel habitats are often poor surrogates for natural habitats. The application of integrated greening of grey infrastructure (IGGI) to artificial shorelines demonstrates how multifunctional structures can provide biodiversity benefits whilst simultaneously serving their primary engineering function. IGGI is being embraced globally, despite many knowledge gaps and limitations. It is a management tool to compensate anthropogenic impacts as part of the Mitigation Hierarchy. There is considerable scope for misuse and ‘greenwashing’ however, by making new developments appear more acceptable, thus facilitating the regulatory process. We encourage researchers to exercise caution when reporting on small-scale experimental trials. We advocate that greater attention is paid to when experiments ‘fail’ or yield unintended outcomes. We advise revisiting, repeating and expanding on experiments to test responses over broader spatio-temporal scales to improve the evidence base. Synthesis and applications. Where societal and economic demand makes development inevitable, particular attention should be paid to avoiding, minimizing and rehabilitating environmental impacts. Integrated greening of grey infrastructure (IGGI) should be implemented as partial compensation for environmental damage. Mutual benefits for both humans and nature can be achieved when IGGI is implemented retrospectively in previously developed or degraded environments. We caution, however, that any promise of net biodiversity gain from new developments should be scrutinized and any local ecological benefits set in the context of the wider environmental impacts. A ‘greened’ development will always impinge on natural systems, a reality that is much less recognized in the sea than on land.</p

    Relationship of transcriptional markers to Leydig cell number in the mouse testis

    Get PDF
    ObjectivesThe current study aims to identify markers that would reflect the number of Leydig cells present in the testis, to help determine whether labour-intensive methods such as stereology are necessary. We used our well-characterised Sertoli cell ablation model in which we have empirically established the size of the Leydig cell population, to try to identify transcriptional biomarkers indicative of population size.ResultsFollowing characterisation of the Leydig cell population after Sertoli cell ablation in neonatal life or adulthood, we identified Hsd3b1 transcript levels as a potential indicator of Leydig cell number with utility for informing decision-making on whether to engage in time-consuming stereological cell counting analysis

    Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men

    Get PDF
    Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∌75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men

    Sertoli cells modulate testicular vascular network development, structure and function to influence circulating testosterone concentrations in adult male mice

    Get PDF
    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. The testicular vasculature forms a complex capillary bed, interdigitating between the seminiferous tubules to provide oxygenation, delivery of micronutrients, and clearance of waste from the testis. Impairment of the testicular vasculature, for example, the reduction in venous drainage observed in cases of varicocele, causes intratesticular hypoxia and germ cell apoptosis (1). The vasculature is also instrumental to the endocrine function of the testis because it is the route by which pituitary gonadotropins are delivered to the testis to support T production and spermatogenesis (2). Conversely, alongside the lymphatic system, the vascular system is important for transport of T to other body systems; a reduced testis and vascular volume is associated with a reduction in circulating T concentrations (3). Our understanding of the mechanisms by which the testis controls local vascular function in adulthood is extremely limited. There is some evidence that testicular mast cells can influence vascular blood flow through release of 5-hydroxytryptamine (4), but perhaps the most well-studied factor influencing testicular vascular function is T. T is a well-established regulator of testicular vasomotion (rhythmical contraction and relaxation of blood vessels, independent of heartbeat) (5, 6) via direct T-mediated activation of the androgen receptor in smooth muscle cells of the testicular vasculature (7). Speculation that Sertoli cells may influence the testicular vasculature is supported by some indirect evidence (5) and in vitro studies (8), but confirmation of a direct role for Sertoli cells in the regulation of the testicular vasculature in vivo has never been demonstrated unequivocally. Recently we developed a unique model system that uses diphtheria toxin to specifically and acutely ablate Sertoli cells from the testis (9, 10). This model has revealed several important, yet previously unknown, roles that Sertoli cells play in neonatal and adult life (reviewed in reference 11). In this study we used models of acute Sertoli cell ablation and acute germ cell ablation, to address whether Sertoli cells actively influence vascular function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature and describe a new paradigm by which the transport of hormones and other factors into and out of the testis can be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship

    A Randomized Comparison of the Endeavor Zotarolimus-Eluting Stent Versus the TAXUS Paclitaxel-Eluting Stent in De Novo Native Coronary Lesions 12-Month Outcomes From the ENDEAVOR IV Trial

    Get PDF
    ObjectivesThe ENDEAVOR IV (Randomized Comparison of Zotarolimus-Eluting and Paclitaxel-Eluting Stents in Patients with Coronary Artery Disease) trial evaluated the safety and efficacy of the zotarolimus-eluting stent (ZES) compared with the paclitaxel-eluting stent (PES).BackgroundFirst-generation drug-eluting stents have reduced angiographic and clinical restenosis, but long-term safety remains controversial. A second-generation drug-eluting stent, which delivers zotarolimus, a potent antiproliferative agent, via a biocompatible phosphorylcholine polymer on a cobalt alloy thin-strut stent has shown promising experimental and early clinical results.MethodsThis is a prospective, randomized (1:1), single-blind, controlled trial comparing outcomes of patients with single de novo coronary lesions treated with ZES or PES. The primary end point was noninferiority of 9-month target vessel failure defined as cardiac death, myocardial infarction, or target vessel revascularization.ResultsAmong a total of 1,548 patients assigned to ZES (n = 773) or PES (n = 775), at 9 months, ZES was noninferior to PES with rates of target vessel failure 6.6% versus 7.1%, respectively (pnoninferiority≀ 0.001). There were fewer periprocedural myocardial infarctions with ZES (0.5% vs. 2.2%; p = 0.007), whereas at 12 months, there were no significant differences between groups in rates of cardiac death, myocardial infarction, target vessel revascularization, or stent thrombosis. Although incidence of 8-month binary angiographic in-segment restenosis was higher in patients treated with ZES versus PES (15.3% vs. 10.4%; p = 0.284), rates of 12-month target lesion revascularization were similar (4.5% vs. 3.2%; p = 0.228), especially in patients without planned angiographic follow-up (3.6% vs. 3.2%; p = 0.756).ConclusionsThese findings demonstrate that ZES has similar clinical safety and efficacy compared with PES in simple and medium complexity single de novo coronary lesions. (ENDEAVOR IV Clinical Trial; NCT00217269
    • 

    corecore