600 research outputs found

    Revisiting digital technologies: envisioning biodigital bodies

    Get PDF
    In this paper the contemporary practices of human genomics in the 21st century are placed alongside the digital bodies of the 1990s. The primary aim is to provide a trajectory of the biodigital as follows: First, digital bodies and biodigital bodies were both part of the spectacular imaginaries of early cybercultures. Second, these spectacular digital bodies were supplemented in the mid-1990s by digital bodywork practices that have become an important dimension of everyday communication. Third, the spectacle of biodigital bodies is in the process of being supplemented by biodigital bodywork practices, through personal or direct-to-consumer genomics. This shift moves a form of biodigital communication into the everyday. Finally, what can be learned from putting the trajectories of digital and biodigital bodies together is that the degree of this communicative shift may be obscured through the doubled attachment of personal genomics to everyday digital culture and high-tech spectacle.Keywords: genomics, biodigital, bodies, spectacle, everyda

    MoviCompile : An LLVM based compiler for heterogeneous SIMD code generation

    Get PDF
    Numerous applications in communication and multimedia domains show significant data-level parallelism (DLP). The amount of DLP varies between applications in the same domain or even within a single application. Most architectures support a single vector-, SIMD-width which may not be optimal. This may cause performance and energy inefficiency. We propose the use of multiple (heterogeneous) vector-widths to better serve applications with varying DLP. The SHAVE (Streaming Hybrid Architecture Vector Engine) VLIW vector processor shown in Figure 1 is an example of such an architecture. SHAVE is a unique VLIW processor that provides hardware support for native 32-bit (short) and 128-bit (long) vector operations. Vector arithmetic unit (VAU) supports 128-bit vector arithmetic of 8/16/32-bit integer and 16/32-bit floating point types. Scalar arithmetic unit (SAU) supports 32-bit vector arithmetic of 8/16-bit integer and 16-bit floating point types. The moviCompile compiler is an LLVM based commercial compiler targeting code generation for SHAVE processor family. The moviCompile compiler is capable of SIMD code generation for 128-bit (long) and 64-bit vector operations. This work focuses on compiler backend support for 32-bit (short) vector operations. More specifically, this work aims to generate SIMD code for short vector types (e.g. 4 x i8, 2 x i16, 2 x f16) that can be executed on 32-bit SAU next to the 128/64-bit SIMD code. As a result, moviCompile is able to generate heterogeneous assembly code consisting of both short and long vector SIMD operations. Currently, we are testing the compiler using TSVC (Test Suite for Vectorizing Compilers) and intend to measure the performance improvements

    Peliosis Hepatis With Intrahepatic Hemorrhage: Successful Embolization of the Hepatic Artery

    Get PDF
    Peliosis hepatis is defined as the appearance of blood filled lakes in the hepatic parenchyma. It has been associated with various pharmacological agents and infections. Treatment has been primarily symptomatic and includes discontinuation of offending medications, partial hepatectomy or occasionally liver transplantation. We report a 58 year old white female on hormone replacement therapy who developed symptomatic peliosis hepatis and underwent successful superselective hepatic artery embolization with control of bleeding

    Mixed-length SIMD code generation for VLIW architectures with multiple native vector-widths

    Full text link
    The degree of DLP parallelism in applications is not fixed and varies due to different computational characteristics of applications. On the contrary, most of the processors today include single-width SIMD (vector) hardware to exploit DLP. However, single-width SIMD architectures may not be optimal to serve applications with varying DLP and they may cause performance and energy inefficiency. We propose the usage of VLIW processors with multiple native vector-widths to better serve applications with changing DLP. SHAVE is an example of such VLIW processor and provides hardware support for the native 32-bit and 128-bit wide vector operations. This paper researches and implements the mixed-length SIMD code generation support for SHAVE processor. More specifically, we target generating 32-bit and 128/64-bit SIMD code for the native 32-bit and 128-bit wide vector units of SHAVE processor. In this way, we improved the performance of compiler generated SIMD code by reducing the number of overhead operations and by increasing the SIMD hardware utilization. Experimental results demonstrated that our methodology implemented in the compiler improves the performance of synthetic benchmarks up to 47%

    Reagent free electrochemical-based detection of silver ions at interdigitated microelectrodes using in-situ pH control

    Get PDF
    Herein we report on the development of an electrochemical sensor for silver ions detection in tap water using anodic sweep voltammetry with in-situ pH control; enabled by closely spaced interdigitated electrode arrays. The in-situ pH control approach allowed the pH of a test solution to be tailored to pH 3 (experimentally determined as the optimal pH) by applying 1.65 V to a protonator electrode with the subsequent production of protons, arising from water electrolysis, dropping the local pH value. Using this approach, an initial proof-of-concept study for silver detection in sodium acetate was undertaken where 1.25 V was applied during deposition (to compensate for oxygen production) and 1.65 V during stripping. Using these conditions, calibration between 0.2 and 10 μM was established with the silver stripping peak ∼0.3 V. The calculated limit of detection was 13 nM. For the final application in tap water, 1.65 V was applied to a protonator electrode for both deposition and stripping of silver. The chloride ions, present in tap water (as a consequence of adding chlorine during the disinfection process) facilitated silver detection and caused the striping peak to shift catholically to ∼0.2 V. The combination of the complexation of silver ions with chloride and in-situ pH control resulted in a linear calibration range between 0.25 and 2 μM in tap water and a calculated limit of detection of 106 nM without the need to add acid or supporting electrolytes

    Genetic evidence supports recolonisation by Mya arenaria of western Europe from North America

    Get PDF
    The softshell clam Mya arenaria (L.) is currently widespread on the east and west coasts of North America. This bivalve also occurs on western European shores, where the post-Pleistocene origin of the species, whether introduced or relict, has been debated. We collected 320 M. arenaria from 8 locations in Europe and North America. Clams (n = 84) from 7 of the locations were examined for mitochondrial DNA variation by sequencing a section of the cytochrome oxidase 1 (COX1) gene. These were analysed together with 212 sequences, sourced from GenBank, from the same gene from 12 additional locations, chiefly from eastern North America but also 1 site each from western North America and from western Europe. Ten microsatellite loci were also investigated in all 320 clams. Nuclear markers showed reduced levels of variation in certain European samples. The same common COX1 haplotypes and microsatellite alleles were present throughout the range of M. arenaria, although significant differences were identified in haplotypic and allelic composition between many samples, particularly those from the 2 continents (Europe and North America). These findings support the hypothesis of post-Pleistocene colonisation of European shores from eastern North America (and the recorded human transfer of clams from the east to the west coast of North America in the 19th century)

    Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP.

    Get PDF
    Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCE Brucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion
    • …
    corecore