85 research outputs found

    Effects of strand and directional asymmetry on base-base coupling and charge transfer in double-helical DNA

    Get PDF
    Mechanistic models of charge transfer (CT) in macromolecules often focus on CT energetics and distance as the chief parameters governing CT rates and efficiencies. However, in DNA, features unique to the DNA molecule, in particular, the structure and dynamics of the DNA base stack, also have a dramatic impact on CT. Here we probe the influence of subtle structural variations on base-base CT within a DNA duplex by examining photoinduced quenching of 2-aminopurine (Ap) as a result of hole transfer (HT) to guanine (G). Photoexcited Ap is used as a dual reporter of variations in base stacking and CT efficiency. Significantly, the unique features of DNA, including the strandedness and directional asymmetry of the double helix, play a defining role in CT efficiency. For an (AT)(n) bridge, the orientation of the base pairs is critical; the yield of intrastrand HT is markedly higher through (A)n compared with (T)(n) bridges, whereas HT via intrastrand pathways is more efficient than through interstrand pathways. Remarkably, for reactions through the same DNA bridge, over the same distance, and with the same driving force, HT from photoexcited Ap to G in the 5' to 3' direction is more efficient and less dependent on distance than HT from 3' to 5'. We attribute these differences in HT efficiency to variations in base-base coupling within the DNA assemblies. Thus base-base coupling is a critical parameter in DNA CT and strongly depends on subtle structural nuances of duplex DNA

    DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains

    Get PDF
    The role of base motions in delocalization and propagation of charge through double helical DNA must be established experimentally and incorporated into mechanistic descriptions of DNA-mediated charge transport (CT). Here, we address these fundamental issues by examining the temperature dependence of the yield of CT between photoexcited 2-aminopurine (Ap*) and G through DNA bridges of varied length and sequence. DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)_nG (n = 0−9, 3.4−34 Å) and mixed bridges, ApAAIAG and ApATATG. CT was monitored through fluorescence quenching of Ap* by G and through HPLC analysis of photolyzed DNA assemblies containing Ap and the modified guanine, N_2-cyclopropylguanosine (^(CP)G); upon oxidation, the ^(CP)G radical cation undergoes rapid ring opening. First, we find that below the duplex melting temperature (∼60 °C), the yield of CT through duplex DNA increases with increasing temperature governed by the length and sequence of the DNA bridge. Second, the distance dependence of CT is regulated by temperature; enhanced DNA base fluctuations within duplex DNA extend CT to significantly longer distances, here up to 34 Å in <10 ns. Third, at all temperatures the yield of CT does not exhibit a simple distance dependence; an oscillatory component, with a period of ∼4−5 base pairs, is evident. These data cannot be rationalized by superexchange, hopping of a localized charge injected into the DNA bridge, a temperature-induced transition from superexchange to thermally induced hopping, or by phonon-assisted polaron hopping. Instead, we propose that CT occurs within DNA assemblies possessing specific, well-coupled conformations of the DNA bases, CT-active domains, accessed through base motion. CT through DNA is described as conformationally gated hopping among stacked domains. Enhanced DNA base motions lead to longer range CT with a complex distance dependence that reflects the roles of coherent dynamics and charge delocalization through transient domains. Consequently, DNA CT is not a simple function of distance but is intimately related to the dynamical structure of the DNA bridge

    2-Aminopurine: A Probe of Structural Dynamics and Charge Transfer in DNA and DNA:RNA Hybrids

    Get PDF
    Spectroscopic techniques are employed to probe relationships between structural dynamics and charge transfer (CT) efficiency in DNA duplexes and DNA:RNA hybrids containing photoexcited 2-aminopurine (Ap*). To better understand the variety of interactions and reactions, including CT, between Ap* and DNA, the fluorescence behavior of Ap* is investigated in a full series of redox-inactive as well as redox-active assemblies. Thus, Ap* is developed as a dual reporter of structural dynamics and base−base CT reactions in nucleic acid duplexes. CD, NMR, and thermal denaturation profiles are consistent with the family of DNA duplexes adopting a distinct conformation versus the DNA:RNA hybrids. Fluorescence measurements establish that the d(A)−r(U) tract of the DNA:RNA hybrid exhibits enhanced structural flexibility relative to that of the d(A)−d(T) tract of the DNA duplexes. The yield of CT from either G or 7-deazaguanine (Z) to Ap* in the assemblies was determined by comparing Ap* emission in redox-active G- or Z-containing duplexes to otherwise identical duplexes in which the G or Z is replaced by inosine (I), the redox-inactive nucleoside analogue. Investigations of CT not only demonstrate efficient intrastrand base−base CT in the DNA:RNA hybrids but also reveal a distance dependence of CT yield that is more shallow through the d(A)−r(U) bridge of the A-form DNA:RNA hybrids than through the d(A)−d(T) bridge of the B-form DNA duplexes. The shallow distance dependence of intrastrand CT in DNA:RNA hybrids correlates with the increased conformational flexibility of bases within the hybrid duplexes. Measurements of interstrand base−base CT provide another means to distinguish between the A- and B-form helices. Significantly, in the A-form DNA:RNA hybrids, a similar distance dependence is obtained for inter- and intrastrand reactions, while, in B-DNA, a more shallow distance dependence is evident with interstrand CT reactions. These observations are consistent with evaluations of intra- and interstrand base overlap in A- versus B-form duplexes. Overall, these data underscore the sensitivity of CT chemistry to nucleic acid structure and structural dynamics

    DNA-Mediated Charge Transport Requires Conformational Motion of the DNA Bases: Elimination of Charge Transport in Rigid Glasses at 77 K

    Get PDF
    We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended π-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)_nG (n = 0−4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT

    Direct Chemical Evidence for Charge Transfer between Photoexcited 2-Aminopurine and Guanine in Duplex DNA

    Get PDF
    Photoexcited 2-aminopurine (Ap*) is extensively exploited as a fluorescent base analogue in the study of DNA structure and dynamics. Quenching of Ap* in DNA is often attributed to stacking interactions between Ap* and DNA bases, despite compelling evidence indicating that charge transfer (CT) between Ap* and DNA bases contributes to quenching. Here we present direct chemical evidence that Ap* undergoes CT with guanine residues in duplex DNA, generating oxidative damage at a distance. Irradiation of Ap in DNA containing the modified guanine, cyclopropylguanosine (^(CP)G), initiates hole transfer from Ap* followed by rapid ring opening of the ^(CP)G radical cation. Ring opening accelerates hole trapping to a much shorter time regime than for guanine radicals in DNA; consequently, trapping effectively competes with back electron transfer (BET) leading to permanent CT chemistry. Significantly, BET remains competitive, even with this much faster trapping reaction, consistent with measured kinetics of DNA-mediated CT. The distance dependence of BET is sharper than that of forward CT, leading to an inverted dependence of product yield on distance; at short distances product yield is inhibited by BET, while at longer distances trapping dominates, leading to permanent products. The distance dependence of product yield is distinct from forward CT, or charge injection. As with photoinduced charge transfer in other chemical and biological systems, rapid kinetics for charge injection into DNA need not be associated with a high yield of DNA damage products

    SARS-CoV-2 infection in the first trimester and the risk of early miscarriage: a UK population-based prospective cohort study of 3041 pregnancies conceived during the pandemic

    Get PDF
    STUDY QUESTION: Does maternal infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2) in the first trimester affect the risk of miscarriage before 13 week's gestation? SUMMARY ANSWER: Pregnant women with self-reported diagnosis of SARS-CoV-2 in the first trimester had a higher risk of early miscarriage. WHAT IS KNOWN ALREADY: Viral infections during pregnancy have a broad spectrum of placental and neonatal pathology. Data on the effects of the SARS-CoV-2 infection in pregnancy are still emerging. Two systematic reviews and meta-analyses reported an increased risk of preterm birth, caesarean delivery, maternal morbidity and stillbirth. Data on the impact of first trimester infection on early pregnancy outcomes are scarce. This is the first study, to our knowledge, to investigate the rates of early pregnancy loss during the SARS-CoV-2 outbreak among women with self-reported infection. STUDY DESIGN, SIZE, DURATION: This was a nationwide prospective cohort study of pregnant women in the community recruited using social media between 21st May and 31st December, 2020. We recruited 3545 women who conceived during the SARS-CoV-2 pandemic who were less than 13 week's gestation at the time of recruitment. PARTICIPANTS/MATERIALS, SETTING, METHODS: The COVID-19 Contraception and Pregnancy Study (CAP-COVID) was an on-line survey study collecting longitudinal data from pregnant women in the UK aged 18 years or older. Women who were pregnant during the pandemic were asked to complete on-line surveys at the end of each trimester. We collected data on current and past pregnancy complications, their medical history and whether they or anyone in their household had symptoms or been diagnosed with SARS-CoV-2 infection during each trimester of their pregnancy. RT-PCR-based SARS-CoV-2 RNA detection from respiratory samples (e.g., nasopharynx) is the standard practice for diagnosis of SARS-CoV-2 in the UK. We compared rate of self-reported miscarriage in three groups: 'presumed infected' i.e those who reported a diagnosis with SARS-CoV-2 infection in the first trimester; 'uncertain' i.e those who did not report a diagnosis but had symptoms/household contacts with symptoms/diagnosis; and 'presumed uninfected' i.e., those who did not report any symptoms/diagnosis and had no household contacts with symptoms/diagnosis of SARS-CoV-2. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 3545 women registered for the CAP-COVID study at less than 13 weeks gestation and were eligible for this analysis. Data for the primary outcome were available from 3041 women (86%). In the overall sample, the rate of self-reported miscarriage was 7.8% (238/3041 [95% CI, 7-9]). The median gestational age at miscarriage was 9 weeks (interquartile range 8-11). Seventy-seven women were in the 'presumed infected' group (77/3041, 2.5% [95% CI 2 - 3]), 295/3041 were in the uncertain group (9.7%, [95% CI 9-11]) and the rest in the 'presumed uninfected' (87.8%, 2669/3041, [95% CI 87-89]). The rate of early miscarriage was 14% in the 'presumed infected' group, 5% in the 'uncertain' and 8% in the 'presumed uninfected' (11/77 [95% CI 6-22] versus15/295, [95% CI 3-8] versus 212/2669 [95% CI 7-9], p = 0.02). After adjusting for age, BMI, ethnicity, smoking status, gestational age at registration and the number of previous miscarriages, the risk of early miscarriage appears to be higher in the 'presumed infected' group (relative rate 1.7, 95% CI 1.0-3.0, p = 0.06). LIMITATIONS, REASONS FOR CAUTION: We relied on self-reported data on early pregnancy loss and SARS-CoV-2 infection without any means of checking validity. Some women in the 'presumed uninfected' and 'uncertain' groups may have had asymptomatic infections. The number of 'presumed infected' in our study was low and therefore the study was relatively underpowered. WIDER IMPLICATIONS OF THE FINDINGS: This was a national study from the UK, where infection rates were one of the highest in the world. Based on the evidence presented here, women who are infected with SARS-CoV-2 in their first trimester may be at an increased risk of a miscarriage. However, the overall rate of miscarriage in our study population was 8%. This is reassuring and suggests that if there is an effect of SARS-CoV-2 on the risk of miscarriage, this may be limited to those with symptoms substantial enough to lead to a diagnostic test. Further studies are warranted to evaluate a causal association between SARS-CoV-2 infection in early pregnancy and miscarriage risk. Although we did not see an overall increase in the risk of miscarriage, the observed comparative increase in the presumed infected group reinforces the message that pregnant women should continue to exercise social distancing measures and good hygiene throughout their pregnancy to limit their risk of infection. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a grant from the Elizabeth Garrett Anderson Hospital Charity, (G13-559194). The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. JAH is supported by an NIHR Advanced Fellowship. ALD is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: support to JAH and ALD as above; no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work. TRIAL REGISTRATION NUMBER: n/a

    Hypoxia-induced responses by endothelial colony-forming cells are modulated by placental growth factor

    Get PDF
    BACKGROUND: Endothelial colony-forming cells (ECFCs), also termed late outgrowth endothelial cells, are a well-defined circulating endothelial progenitor cell type with an established role in vascular repair. ECFCs have clear potential for cell therapy to treat ischaemic disease, although the precise mechanism(s) underlying their response to hypoxia remains ill-defined. METHODS: In this study, we isolated ECFCs from umbilical cord blood and cultured them on collagen. We defined the response of ECFCs to 1% O(2) exposure at acute and chronic time points. RESULTS: In response to low oxygen, changes in ECFC cell shape, proliferation, size and cytoskeleton phenotype were detected. An increase in the number of senescent ECFCs also occurred as a result of long-term culture in 1% O(2). Low oxygen exposure altered ECFC migration and tube formation in Matrigel®. Increases in angiogenic factors secreted from ECFCs exposed to hypoxia were also detected, in particular, after treatment with placental growth factor (PlGF). Exposure of cells to agents that stabilise hypoxia-inducible factors such as dimethyloxalylglycine (DMOG) also increased PlGF levels. Conditioned medium from both hypoxia-treated and DMOG-treated cells inhibited ECFC tube formation. This effect was reversed by the addition of PlGF neutralising antibody to the conditioned medium, confirming the direct role of PlGF in this effect. CONCLUSIONS: This study deepens our understanding of the response of ECFCs to hypoxia and also identifies a novel and important role for PlGF in regulating the vasculogenic potential of ECFCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0430-0) contains supplementary material, which is available to authorized users

    Disinhibition Mediates a Form of Hippocampal Long-Term Potentiation in Area CA1

    Get PDF
    The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore