1,133 research outputs found

    A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans.

    Get PDF
    Eukaryotes have evolved elaborate mechanisms to ensure that chromosomes segregate with high fidelity during mitosis and meiosis, and yet specific aneuploidies can be adaptive during environmental stress. Here, we identify a chromatin-based system required for inducible aneuploidy in a human pathogen. Candida albicans utilizes chromosome missegregation to acquire tolerance to antifungal drugs and for nonmeiotic ploidy reduction after mating. We discovered that the ancestor of C. albicans and 2 related pathogens evolved a variant of histone 2A (H2A) that lacks the conserved phosphorylation site for kinetochore-associated Bub1 kinase, a key regulator of chromosome segregation. Using engineered strains, we show that the relative gene dosage of this variant versus canonical H2A controls the fidelity of chromosome segregation and the rate of acquisition of tolerance to antifungal drugs via aneuploidy. Furthermore, whole-genome chromatin precipitation analysis reveals that Centromere Protein A/ Centromeric Histone H3-like Protein (CENP-A/Cse4), a centromeric histone H3 variant that forms the platform of the eukaryotic kinetochore, is depleted from tetraploid-mating products relative to diploid parents and is virtually eliminated from cells exposed to aneuploidy-promoting cues. We conclude that genetically programmed and environmentally induced changes in chromatin can confer the capacity for enhanced evolvability via chromosome missegregation

    The First Data Release of the KODIAQ Survey

    Get PDF
    We present and make publicly available the first data release (DR1) of the Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) survey. The KODIAQ survey is aimed at studying galactic and circumgalactic gas in absorption at high-redshift, with a focus on highly-ionized gas traced by OVI, using the HIRES spectrograph on the Keck-I telescope. KODIAQ DR1 consists of a fully-reduced sample of 170 quasars at 0.29 < z_em < 5.29 observed with HIRES at high resolution (36,000 <= R <= 103,000) between 2004 and 2012. DR1 contains 247 spectra available in continuum normalized form, representing a sum total exposure time of ~1.6 megaseconds. These co-added spectra arise from a total of 567 individual exposures of quasars taken from the Keck Observatory Archive (KOA) in raw form and uniformly processed using a HIRES data reduction package made available through the XIDL distribution. DR1 is publicly available to the community, housed as a higher level science product at the KOA. We will provide future data releases that make further QSOs, including those with pre-2004 observations taken with the previous-generation HIRES detectors.Comment: 14 pages, 9 figures, Submitted to AJ. All data products available at the Keck Observatory Archive beginning May 15, 2015. URL: https://koa.ipac.caltech.edu/applications/KODIA

    Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 <it>CalS </it>gene family members in <it>Arabidopsis</it>, only one (<it>CalS5</it>) has been directly linked to pollen tube callose. <it>CalS5 </it>orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of <it>CalS5 </it>or what its ancestral function may have been.</p> <p>Results</p> <p>We investigated expression of <it>CalS </it>in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a <it>CalS5 </it>orthologue from <it>Cabomba caroliniana </it>(<it>CcCalS5</it>) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low <it>CcCalS5 </it>expression within several vegetative tissues, but strong expression in mature pollen. <it>CalS </it>transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to <it>CalS5</it>. We also report <it>in silico </it>evidence of a putative <it>CalS5 </it>orthologue from <it>Amborella</it>. Among gymnosperms, <it>CalS5 </it>transcripts were recovered from germinating pollen of <it>Gnetum </it>and <it>Ginkgo</it>, but a novel <it>CalS </it>paralog was instead amplified from germinating pollen of <it>Pinus taeda</it>.</p> <p>Conclusion</p> <p>The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that <it>CalS5 </it>had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms.</p
    corecore