4 research outputs found

    Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis

    No full text
    Pseudomonas aeruginosa causes chronic infections in the lungs of cystic fibrosis (CF) individuals and remains the leading cause of morbidity and mortality associated with the disease. Biofilm growth and phenotypic diversification are factors thought to contribute to this organism's persistence. Most studies have focused on laboratory isolates such as strain PAO1, and there are relatively few reports characterizing the properties of CF strains, especially under decreased oxygen conditions such as occur in the CF lung. This study compared the phenotypic and functional properties of P. aeruginosa from chronically infected CF adults with those of strain PAO1 and other clinical non-CF isolates under aerobic and anaerobic culture conditions. The CF isolates overall displayed a reduced ability to form biofilms in standard in vitro short-term models. They also grew more slowly in culture, and exhibited decreased adherence to glass and decreased motilities (swimming, swarming and twitching). All of these characteristics were markedly accentuated by anaerobic growth conditions. Moreover, the CF strain phenotypes were not readily reversed by culture manipulations designed to encourage planktonic growth. The CF strains were thus inherently different from strain PAO1 and most of the other non-CF clinical P. aeruginosa isolates tested. In vitro models used to research CF isolate biofilm growth need to take the above properties of these strains into account

    Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions

    No full text
    The success of Pseudomonas aeruginosa in cystic fibrosis (CF) and other chronic infections is largely attributed to its ability to grow in antibiotic-resistant biofilm communities. This study investigated the effects of limiting iron levels as a strategy for preventing/disrupting P. aeruginosa biofilms. A range of synthetic and naturally occurring iron-chelating agents were examined. Biofilm development by P. aeruginosa strain PAO1 and CF sputum isolates from chronically infected individuals was significantly decreased by iron removal under aerobic atmospheres. CF strains formed poor biofilms under anaerobic conditions. Strain PAO1 was also tested under anaerobic conditions. Biofilm formation by this model strain was almost totally prevented by several of the chelators tested. The ability of synthetic chelators to impair biofilm formation could be reversed by iron addition to cultures, providing evidence that these effective chelating compounds functioned by directly reducing availability of iron to P. aeruginosa. In contrast, the biological chelator lactoferrin demonstrated enhanced anti-biofilm effects as iron supplementation increased. Hence biofilm inhibition by lactoferrin appeared to occur through more complex mechanisms to those of the synthetic chelators. Overall, our results demonstrate the importance of iron availability to biofilms and that iron chelators have potential as adjunct therapies for preventing biofilm development, especially under low oxygen conditions such as encountered in the chronically infected CF lung

    Biofilm differentiation and dispersal in mucoid pseudomonas aeruginosa isolates from patients with cystic fibrosis

    No full text
    Intractable biofilm infections with Pseudomonas aeruginosa are the major cause of premature death associated with cystic fibrosis (CF). Few studies have explored the biofilm developmental cycle of P. aeruginosa isolates from chronically infected individuals. This study shows that such clinical isolates exhibit biofilm differentiation and dispersal processes similar to those of the better-studied laboratory P. aeruginosa strain PAO1 in the glass flow-cell (continuous-culture) biofilm model, albeit they are initially less adherent and their microcolonies are slower to develop and show heterogeneous, strain-specific variations in architecture. Confocal scanning laser microscopy combined with LIVE/DEAD viability staining revealed that in all CF biofilms bacterial cell death occurred in maturing biofilms, extending from the substratum to the central regions of mature microcolonies to varying degrees, depending on the strain. Bacteriophage activity was detected in the maturing biofilms of all CF strains examined and the amount of phage produced paralleled the degree of cell death seen in the biofilm. Some CF strains exhibited 'seeding dispersal' associated with the above phenomena, producing 'hollowing' as motile cells evacuated from the microcolony interiors as has been described for strain PAO1. Moreover, morphotypic cell variants were seen in the biofilm effluents of all CF strains. For those CF strains where marked cell death and seeding dispersal occurred in the microcolonies, variants were more diverse (up to five morphotypes) compared to those of strain PAO1 (two morphotypes). Given that variants of strain PAO1 have enhanced colonization traits, it seems likely that the similar biofilm dispersal events described here for CF strains contribute to the variability seen in clinical isolates and the overall persistence of the P. aeruginosa in the CF airwa
    corecore