15 research outputs found

    Perovskites on ice : an additive-free approach to increase the shelf-life of triple-cation perovskite precursor solutions

    Get PDF
    The development of stable perovskite precursor solutions is critical if solution-processable perovskite solar cells (PSCs) are to be practically manufacturable. Ideally, such precursors should combine high solution stability without using chemical additives that might compromise PSC performance. Here, we show that the shelf-life of high-performing perovskite precursors can be greatly improved by storing solutions at low-temperature without the need to alter chemical composition. We find that devices fabricated from solutions stored for 31-days at 4°C achieve a champion PCE of 18.6% (97% of original PCE). The choice of precursor solvent also impacts solution shelf-life, with DMSO-based solutions having enhanced solution stability compared to those including DMF. We explore the compositions of aged precursors using NMR spectroscopy and analyse films made from these solutions using X-ray diffraction. We conclude that the improvement in precursor solution stability is directly linked to the suppression of an addition-elimination reaction and the preservation of higher amounts of methylammonium within solution

    Binary solvent system used to fabricate fully annealing‐free perovskite solar cells

    Get PDF
    High temperature post-deposition annealing of hybrid lead halide perovskite thin films—typically lasting at least 10 min—dramatically limits the maximum roll-to-roll coating speed, which determines solar module manufacturing costs. While several approaches for “annealing-free” perovskite solar cells (PSCs) have been demonstrated, many are of limited feasibility for scalable fabrication. Here, this work has solvent-engineered a high vapor pressure solvent mixture of 2-methoxy ethanol and tetrahydrofuran to deposit highly crystalline perovskite thin-films at room temperature using gas-quenching to remove the volatile solvents. Using this approach, this work demonstrates p-i-n devices with an annealing-free MAPbI3 perovskite layer achieving stabilized power conversion efficiencies (PCEs) of up to 18.0%, compared to 18.4% for devices containing an annealed perovskite layer. This work then explores the deposition of self-assembled molecules as the hole-transporting layer without annealing. This work finally combines the methods to create fully annealing-free devices having stabilized PCEs of up to 17.1%. This represents the state-of-the-art for annealing-free fabrication of PSCs with a process fully compatible with roll-to-roll manufacture

    Gas‐assisted spray coating of perovskite solar cells incorporating sprayed self‐assembled monolayers

    No full text
    Self-assembled monolayers (SAMs) are becoming widely utilized as hole-selective layers in high-performance p-i-n architecture perovskite solar cells. Ultrasonic spray coating and airbrush coating are demonstrated here as effective methods to deposit MeO-2PACz; a carbazole-based SAM. Potential dewetting of hybrid perovskite precursor solutions from this layer is overcome using optimized solvent rinsing protocols. The use of air-knife gas-quenching is then explored to rapidly remove the volatile solvent from an MAPbI3 precursor film spray-coated onto an MeO-2PACz SAM, allowing fabrication of p-i-n devices with power conversion efficiencies in excess of 20%, with all other layers thermally evaporated. This combination of deposition techniques is consistent with a rapid, roll-to-roll manufacturing process for the fabrication of large-area solar cells

    Exome Sequencing and the Identification of New Genes and Shared Mechanisms in Polymicrogyria

    No full text
    Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria..SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore