10 research outputs found

    A de novo CSDE1 variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents.

    Get PDF
    Funder: National Human Genome Research Institute; Id: http://dx.doi.org/10.13039/100000051Funder: Broad Institute; Id: http://dx.doi.org/10.13039/100013114Funder: Horizon 2020; Id: http://dx.doi.org/10.13039/100010661Funder: Muscular Dystrophy Canada; Id: http://dx.doi.org/10.13039/501100000223Funder: Evelyn Trust; Id: http://dx.doi.org/10.13039/501100004282Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530CSDE1 encodes the cytoplasmic cold shock domain-containing protein E1 (CSDE1), which is highly conserved across species and functions as an RNA-binding protein involved in translationally coupled mRNA turnover. CSDE1 displays a bidirectional role: promoting and repressing the translation of RNAs but also increasing and decreasing the abundance of RNAs. Preclinical studies highlighted an involvement of CSDE1 in different forms of cancer. Moreover, CSDE1 is highly expressed in human embryonic stem cells and plays a role in neuronal migration and differentiation. A genome-wide association study suggested CSDE1 as a potential autism-spectrum disorder risk gene. A multicenter next generation sequencing approach unraveled likely causative heterozygous variants in CSDE1 in 18 patients, identifying a new autism spectrum disorder-related syndrome consisting of autism, intellectual disability, and neurodevelopmental delay. Since then, no further patients with CSDE1 variants have been reported in the literature. Here, we report a 9.5-year-old girl from a consanguineous family of Turkish origin suffering from profound delayed speech and motor development, moderate intellectual disability, neurologic and psychiatric symptoms as well as hypoplasia of corpus callosum and mildly reduced brain volume on brain magnetic resonance imaging associated with a recurrent de novo mutation in CSDE1 (c.367C > T; p.R123*) expanding the phenotypical spectrum associated with pathogenic CSDE1 variants

    Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement.

    Get PDF
    Funder: European Regional Development Fund; Id: http://dx.doi.org/10.13039/501100008530Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Ehlers-Danlos/myopathy overlap syndrome caused by a large de novo deletion in COL12A1

    No full text
    Autosomal dominant and recessive mutations in COL12A1 cause the Ehlers-Danlos/myopathy overlap syndrome. Here, we describe a boy with fetal hypokinesia, severe neonatal weakness, striking hyperlaxity, high arched palate, retrognathia, club feet, and pectus excavatum. His motor development was initially delayed but muscle strength improved with time while hyperlaxity remained very severe causing recurrent joint dislocations. Using trio exome sequencing and a copy number variation (CNV) analysis tool, we identified an in-frame de novo heterozygous deletion of the exons 45 to 54 in the COL12A1 gene. Collagen XII immunostaining on cultured skin fibroblasts demonstrated intracellular retention of collagen XII, supporting the pathogenicity of the deletion. The phenotype of our patient is slightly more severe than other cases with dominantly acting mutations, notably with the presence of fetal hypokinesia. This case highlights the importance of CNVs analysis in the COL12A1 gene in patients with a phenotype suggesting Ehlers-Danlos/myopathy overlap syndrome

    De novo coding variants in the AGO1 gene cause a neurodevelopmental disorder with intellectual disability

    Get PDF
    Background: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). Methods: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). Results: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. Conclusion: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD
    corecore