13 research outputs found

    Continuous Reasoning: Scaling the impact of formal methods

    Get PDF
    This paper describes work in continuous reasoning, where formal reasoning about a (changing) codebase is done in a fashion which mirrors the iterative, continuous model of software development that is increasingly practiced in industry. We suggest that advances in continuous reasoning will allow formal reasoning to scale to more programs, and more programmers. The paper describes the rationale for continuous reasoning, outlines some success cases from within industry, and proposes directions for work by the scientific community

    Reasoning about Programs Using a Scientific Method

    Full text link

    Scaling Static Analyses at Facebook

    Get PDF

    A True Positives Theorem for a Static Race Detector - Extended Version

    Get PDF
    RacerD is a static race detector that has been proven to be effective in engineering practice: it has seen thousands of data races fixed by developers before reaching production, and has supported the migration of Facebook's Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this analysis, versus the original RacerD. The theorem was motivated in the first case by the desire to understand the observation from production that RacerD was providing remarkably accurate signal to developers, and then the theorem guided further analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in understanding, justifying and designing effective static analyses for bug catching

    Applying formal verification to microkernel IPC at meta

    Get PDF
    We use Iris, an implementation of concurrent separation logic in the Coq proof assistant, to verify two queue data structures used for inter-process communication in an operating system under development. Our motivations are twofold. First, we wish to leverage formal verification to boost confidence in a delicate piece of industrial code that was subject to numerous revisions. Second, we aim to gain information on the cost-benefit tradeoff of applying a state-of-the-art formal verification tool in our industrial setting. On both fronts, our endeavor has been a success. The verification effort proved that the queue algorithms are correct and uncovered four algorithmic simplifications as well as bugs in client code. The simplifications involve the removal of two memory barriers, one atomic load, and one boolean check, all in a performance-sensitive part of the OS. Removing the redundant boolean check revealed unintended uses of uninitialized memory in multiple device drivers, which were fixed. The proof work was completed in person months, not years, by engineers with no prior familiarity with Iris. These findings are spurring further use of verification at Meta

    Concurrent incorrectness separation logic

    Get PDF
    Incorrectness separation logic (ISL) was recently introduced as a theory of under-approximate reasoning, with the goal of proving that compositional bug catchers find actual bugs. However, ISL only considers sequential programs. Here, we develop concurrent incorrectness separation logic (CISL), which extends ISL to account for bug catching in concurrent programs. Inspired by the work on Views, we design CISL as a parametric framework, which can be instantiated for a number of bug catching scenarios, including race detection, deadlock detection, and memory safety error detection. For each instance, the CISL meta-theory ensures the soundness of incorrectness reasoning for free, thereby guaranteeing that the bugs detected are true positives

    Finding real bugs in big programs with incorrectness logic

    Get PDF
    Incorrectness Logic (IL) has recently been advanced as a logical theory for compositionally proving the presence of bugs—dual to Hoare Logic, which is used to compositionally prove their absence. Though IL was motivated in large part by the aim of providing a logical foundation for bug-catching program analyses, it has remained an open question: is IL useful only retrospectively (to explain existing analyses), or can it actually be useful in developing new analyses which can catch real bugs in big programs? In this work, we develop Pulse-X, a new, automatic program analysis for catching memory errors, based on ISL, a recent synthesis of IL and separation logic. Using Pulse-X, we have found 15 new real bugs in OpenSSL, which we have reported to OpenSSL maintainers and have since been fixed. In order not to be overwhelmed with potential but false error reports, we develop a compositional bug-reporting criterion based on a distinction between latent and manifest errors, which references the under-approximate ISL abstractions computed by Pulse-X, and we investigate the fix rate resulting from application of this criterion. Finally, to probe the potential practicality of our bug-finding method, we conduct a comparison to Infer, a widely used analyzer which has proven useful in industrial engineering practice

    Incorrectness logic

    No full text
    Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would like to have correctness, you might find yourself spending most of your time reasoning about incorrectness. This includes informal reasoning that people do while looking at or thinking about their code, as well as that supported by automated testing and static analysis tools. This paper describes a simple logic for program incorrectness which is, in a sense, the other side of the coin to Hoare's logic of correctness

    The Daily Texan

    No full text
    Texas Student Medi

    Scaling Static Analyses at Facebook

    Get PDF
    corecore