7 research outputs found

    Intensification of precipitation extremes with warming in a cloud resolving model

    Get PDF
    A cloud-resolving model is used to investigate the effect of warming on high percentiles of precipitation (precipitation extremes) in the idealized setting of radiative-convective equilibrium. While this idealized setting does not allow for several factors that influence precipitation in the tropics, it does allow for an evaluation of the response of precipitation extremes to warming in simulations with resolved rather than parameterized convection. The methodology developed should also be applicable to less idealized simulations. Modeled precipitation extremes are found to increase in magnitude in response to an increase in sea surface temperature. A dry static energy budget is used to relate the changes in precipitation extremes to changes in atmospheric temperature, vertical velocity, and precipitation efficiency. To first order, the changes in precipitation extremes are captured by changes in the mean temperature structure of the atmosphere. Changes in vertical velocities play a secondary role and tend to weaken the strength of precipitation extremes, despite an intensification of updraft velocities in the upper troposphere. The influence of changes in condensate transports on precipitation extremes is quantified in terms of a precipitation efficiency; it does not change greatly with warming. Tropical precipitation extremes have previously been found to increase at a greater fractional rate than the amount of atmospheric water vapor in observations of present-day variability and in some climate model simulations with parameterized convection. But the fractional increases in precipitation extremes in the cloud-resolving simulations are comparable in magnitude to those in surface water vapor concentrations (owing to a partial cancellation between dynamical and thermodynamical changes), and are substantially less than the fractional increases in column water vapor.Texas Advanced Computing CenterNational Science Foundation (U.S.) (TeraGrid resources

    Theory and Simulation of Passive Scalar Mixing in the Presence of a Mean Scalar Gradient

    Get PDF
    The turbulent mixing of a passive scalar in the presence of a mean scalar gradient was investigated using theory and simulation. The velocity-scalar cospectrum measures the distribution of the mean scalar flux across scales. An inequality is shown to bound the magnitude of the cospectrum in terms of the shell-summed energy and scalar spectra. At high Schmidt number this bound limits the possible contribution of the sub-Kolmogorov scales to the scalar flux. At low Schmidt number we use an argument of Batchelor, Howells, and Townsend (1959) to derive a new asymptotic result for the cospectrum in the inertial-diffusive range, with a -11/3 power law wavenumber dependence. A comparison is made with results from large-eddy simulation at low Schmidt number. The sparse direct-interaction perturbation (SDIP) was used to calculate the cospectrum for a range of Schmidt numbers. The Kolmogorov type scaling result is recovered in the inertial-convective range, and the constant of proportionality was calculated. At high Schmidt numbers, the cospectrum is found to decay exponentially in the viscous-convective range, and at low Schmidt numbers the -11/3 power law is observed in the inertial-diffusive range. The stretched-spiral vortex model was used to calculate the cospectrum, and asymptotic expressions were found for the contribution to the cospectrum from the axial velocity in the vortex structures. Results are reported for the cospectrum from a direct numerical simulation at a Taylor Reynolds number of 265, and a comparison is made of results for the cospectrum from the SDIP, the stretched-spiral vortex model, simulation, and experiment. The stretched-spiral vortex model was also used to derive expressions for the modal time correlation functions of the velocity and scalar fields. These expressions were evaluated numerically and asymptotically. Winding by the vortex core is shown to lead to an inertial timescale, and movement of the vortex structures by the large scale flow leads to a sweeping timescale. The velocity and scalar modal time correlation functions were calculated in the direct numerical simulation. They coincide for large enough wavenumber, and are found to collapse to universal forms when a sweeping timescale is used.</p

    Influence of microphysics on the scaling of precipitation extremes with temperature

    No full text
    Simulations of radiative-convective equilibrium with a cloud-system resolving model are used to investigate the scaling of high percentiles of the precipitation distribution (precipitation extremes) over a wide range of surface temperatures. At surface temperatures above roughly 295 K, precipitation extremes increase with warming in proportion to the increase in surface moisture, following what is termed Clausius-Clapeyron (CC) scaling. At lower temperatures, the rate of increase of precipitation extremes depends on the choice of cloud and precipitation microphysics scheme and the accumulation period, and it differs markedly from CC scaling in some cases. Precipitation extremes are found to be sensitive to the fall speeds of hydrometeors, and this partly explains the different scaling results obtained with different microphysics schemes. The results suggest that microphysics play an important role in determining the response of convective precipitation extremes to warming, particularly when ice- and mixed-phase processes are important.National Science Foundation (U.S.) (Grant AGS-1148594)United States. National Aeronautics and Space Administration (ROSES Grant 09-ID509-0049

    The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” Scaling Does Not Hold over Land

    No full text
    Simulations with climate models show a land–ocean contrast in the response of P − E (precipitation minus evaporation or evapotranspiration) to global warming, with larger changes over ocean than over land. The changes over ocean broadly follow a simple thermodynamic scaling of the atmospheric moisture convergence: the so-called “wet-get-wetter, dry-get-drier” mechanism. Over land, however, the simple scaling fails to give any regions with decreases in P − E, and it overestimates increases in P − E compared to the simulations. Changes in circulation cause deviations from the simple scaling, but they are not sufficient to explain this systematic moist bias. It is shown here that horizontal gradients of changes in temperature and fractional changes in relative humidity, not accounted for in the simple scaling, are important over land and high-latitude oceans. An extended scaling that incorporates these gradients is shown to better capture the response of P − E over land, including a smaller increase in global-mean runoff and several regions with decreases in P − E. In the zonal mean over land, the gradient terms lead to a robust drying tendency at almost all latitudes. This drying tendency is shown to relate, in part, to the polar amplification of warming in the Northern Hemisphere, and to the amplified warming over continental interiors and on the eastern side of midlatitude continents.Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global ChangeNational Science Foundation (U.S.) (Grant AGS-1148594)United States. National Aeronautics and Space Administration (ROSES Grant 09-IDS09-0049

    Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution

    No full text
    Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resolution simulations that are run without a convective parameterization on a quasi-global aquaplanet. The frequency distributions of precipitation rates and precipitation cluster sizes in the tropics of a control simulation are similar to the observed distributions. In response to climate warming, 3 h precipitation extremes increase at rates of up to [Formula: see text] in the tropics because of a combination of positive thermodynamic and dynamic contributions. The dynamic contribution at different latitudes is connected to the vertical structure of warming using a moist static stability. When the precipitation rates are first averaged to a daily timescale and coarse-grained to a typical global climate-model resolution prior to calculating the precipitation extremes, the response of the precipitation extremes to warming becomes more similar to what was found previously in coarse-resolution aquaplanet studies. However, the simulations studied here do not exhibit the high rates of increase of tropical precipitation extremes found in projections with some global climate models. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'

    A model for the relationship between tropical precipitation and column water vapor

    No full text
    Several observational studies have shown a tight relationship between tropical precipitation and column-integrated water vapor. We show that the observed relationship in the tropics between column-integrated water vapor, precipitation, and its variance can be qualitatively reproduced by a simple and physically motivated two-layer model. It has previously been argued that features of this relationship could be explained by analogy with the theory of continuous phase transitions. Instead, our model explicitly assumes that the onset of precipitation is governed by a stability threshold involving boundary-layer water vapor. This allows us to explain the precipitation-humidity relationship over a broader range of water vapor values, and may explain the observed temperature dependence of the relationship
    corecore