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Abstract

The turbulent mixing of a passive scalar in the presence of a mean scalar gradient was

investigated using theory and simulation. The velocity-scalar cospectrum measures

the distribution of the mean scalar flux across scales. An inequality is shown to bound

the magnitude of the cospectrum in terms of the shell-summed energy and scalar

spectra. At high Schmidt number this bound limits the possible contribution of the

sub-Kolmogorov scales to the scalar flux. At low Schmidt number we use an argument

of Batchelor, Howells, and Townsend (1959) to derive a new asymptotic result for

the cospectrum in the inertial-diffusive range, with a −11/3 power law wavenumber

dependence. A comparison is made with results from large-eddy simulation at low

Schmidt number.

The sparse direct-interaction perturbation (SDIP) was used to calculate the cospec-

trum for a range of Schmidt numbers. The Kolmogorov type scaling result is recovered

in the inertial-convective range, and the constant of proportionality was calculated.

At high Schmidt numbers, the cospectrum is found to decay exponentially in the

viscous-convective range, and at low Schmidt numbers the −11/3 power law is ob-

served in the inertial-diffusive range. The stretched-spiral vortex model was used to

calculate the cospectrum, and asymptotic expressions were found for the contribu-

tion to the cospectrum from the axial velocity in the vortex structures. Results are

reported for the cospectrum from a direct numerical simulation at a Taylor Reynolds

number of 265, and a comparison is made of results for the cospectrum from the

SDIP, the stretched-spiral vortex model, simulation, and experiment.

The stretched-spiral vortex model was also used to derive expressions for the modal

time correlation functions of the velocity and scalar fields. These expressions were

evaluated numerically and asymptotically. Winding by the vortex core is shown to

lead to an inertial timescale, and movement of the vortex structures by the large scale

flow leads to a sweeping timescale. The velocity and scalar modal time correlation
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functions were calculated in the direct numerical simulation. They coincide for large

enough wavenumber, and are found to collapse to universal forms when a sweeping

timescale is used.
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Chapter 1 Introduction

The problem of turbulent passive scalar mixing shares many of the features of the

classical turbulence problem, and has important applications in areas such as turbu-

lent combustion and dispersion in geophysical flows. A passive scalar is a contaminant

in a fluid that has no dynamical effect on the fluid itself, for example, temperature

in the case of a weakly heated flow. The scalar field evolves under the combined

influence of molecular diffusion and advection by the velocity field, according to the

advection-diffusion equation. Although this equation is linear in the scalar, predicting

the statistics of the scalar field is nonetheless a difficult problem. The canonical prob-

lem for passive scalar mixing involves mixing by an incompressible turbulent velocity

field in the presence of a uniform mean scalar gradient. The velocity field is assumed

to be statistically homogeneous and isotropic, and it can then be shown that the

mean scalar gradient is preserved by the evolution of the flow. This problem has been

the subject of extensive study because the mean gradient acts as a source of scalar

variance, allowing a statistical steady state to be reached, see Overholt and Pope [37].

The mean gradient makes the problem non-isotropic, however, and so a mean scalar

flux arises. The statistics of the scalar field show many similarities to that of the ve-

locity field, but the mean scalar gradient also leads to some interesting difference, for

example, anisotropy at small scales due to ‘ramp-cliff’ structures in the scalar field,

see the review by Warhaft [48]. Here we will concentrate on two particular statistics;

the velocity-scalar cospectrum, and the Eulerian modal time correlation functions.

The velocity-scalar cospectrum represents the distribution of the mean scalar flux

across scales, and the modal time correlation functions can be used to determine the

characteristic timescales for the high wavenumber modes of the velocity and scalar

fields.

Firstly we will review what is currently know about the velocity-scalar cospectrum.

The shell-summed velocity-scalar cospectrum, Cu1c(k), is defined so that the mean
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scalar flux is given by

u1c =

∫ ∞

0

Cu1c(k) dk, (1.1)

where c is the scalar fluctuation, u1 is the component of velocity in the direction of

the mean scalar gradient, k is the wavenumber, and the overbar indicates an ensemble

average. Thus the velocity-scalar cospectrum gives the distribution of the mean scalar

flux across scales, making it relevant, for example, to problems in turbulent heat

transfer. A mean scalar flux can only occur as a result of anisotropy, and so it is

interesting to know how quickly the cospectrum decays with increasing wavenumber.

If, as is thought, the cospectrum decays faster than the scalar or energy spectra,

then this is a measure of the approach to isotropy at the smaller scales. In addition,

because the total scalar flux represents transport in the scalar advection-diffusion

equation, knowledge of the cospectral properties of vortex-models is expected to be

useful in their application to the building of subgrid scalar-flux and mixing models for

use in large-eddy simulation [38]. Also of interest is the effect of the Schmidt number

on the cospectrum, and hence the scalar flux, where the Schmidt number is defined

as the ratio of viscosity to the scalar diffusivity. The effect of Schmidt number on the

scalar spectrum is still the subject of ongoing research, for example, the experimental

work of Miller and Dimotakis [31] at high Reynolds number, and the simulation by

Yeung et al. [50] at low Reynolds number.

While considering the effect of buoyancy on the energy spectrum, Lumley [28] used

a similarity hypothesis to predict the shell-summed cospectrum of the velocity and

potential temperature in the inertial-convective range. If the gravitational force is

set to zero, then the absolute and potential temperatures are the same, and Lumley’s

equation (12) for the cospectrum simplifies to

Cu1c(k) ∼ µ ε1/3 k−7/3, (1.2)

where ε is the energy dissipation and µ is the scalar gradient. We are assuming the

flow is such that temperature is approximately a passive scalar, and the turbulent

velocity field is isotropic. Note that (1.2) follows from dimensional analysis if the
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cospectrum depends only on k, ε and µ.

Mydlarski and Warhaft [34] studied the velocity-temperature cospectrum in a wind

tunnel for Taylor Reynolds numbers, Rλ, as high as 582. Fluctuations in the passive

temperature field were generated by imposing a linear mean temperature gradient

across the tunnel. The resulting cospectrum was noisier than the energy or scalar

spectra, and this was explained by noting that no mathematical limitation keeps

the spectrum either positive or negative. Nonetheless, they found a wavenumber

dependence of approximately k−2 in the inertial-convective range for Rλ of 582, see

also [33]. Interestingly this would represent a slower approach to isotropy at the small

scales than the Lumley scaling result (1.2). Of course, the experimental exponent may

indeed approach −7/3 for higher Reynolds number, but the variation in the exponent

over the range of Rλ reported by Mydlarski and Warhaft [34] seems to asymptote to

an exponent closer to −2.

Kaimal et al. [20] measured the cospectra of velocity and potential temperature in

the atmospheric surface layer, see also Wyngaard and Coté [49]. They found that the

cospectrum involving the horizontal velocity showed a k−5/2 scaling range, and the

cospectrum involving the vertical velocity showed a k−7/3 scaling range. We mention

these results for completeness, although of course the surface layer is significantly

different from the simpler mixing case we consider here.

There have been few attempts to calculate the velocity-scalar cospectrum using

either theory or simulation. Herr, Wang and Collins [17] performed an EDQNM

calculation of the cospectrum, and compared it with direct numerical simulation

(DNS) at an Rλ of 81, although it should be noted that two constants were chosen in

the EDQNM calculation by matching the EDQNM and DNS cospectra.

We turn now from the velocity-scalar cospectrum to two-point, two-time statis-

tics of the velocity and scalar fields. A fundamental, but still disputed property of

isotropic, homogeneous turbulence is the characteristic timescale over which the small

scales of the velocity field decorrelate in an Eulerian frame of reference. Kolmogorov

scaling in the inertial range suggests the inertial eddy-turnover time, (εk2)−1/3. There

is, however, also evidence that the relevant timescale is the ‘sweeping’ time, (urmsk)−1,
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where urms is the root-mean-square (rms) velocity [45, 36, 16, 22, 25]. Knowledge of

the correct time scaling would be useful, for example, as an input to the recent func-

tional derivative closure (FDC) [12] for random advection of a passive scalar, and in

interpreting the importance of the random sweeping effect [45]. Also of interest is the

characteristic timescale of the small scales of a passive scalar mixed by a turbulent

velocity field.

The velocity modal time correlations are the time correlations of the Fourier modes

of the velocity field, and so are a two-time, two-point statistic. Several attempts

have been made to use characteristic time scalings to collapse these correlations to a

universal form. The main experimental work is by Comte-Bellot and Corrsin [6] in

decaying grid turbulence, and is at a maximum Rλ of 72. They achieved a collapse of

the modal time correlations using a parallel combination of four different characteristic

timescales. DNS studies by Orszag and Patterson [36] at Rλ ∼ 16, Gotoh et al. [16]

at Rλ ∼ 46, Kaneda et al. [22] at Rλ ∼ 126, and Sanada and Shanmugasundaram

[45] at Rλ ∼ 200, all found the ‘sweeping’ timescale to be dominant.

Kraichnan [25] studied the modal time correlation and made a simple linearized

estimate, and also an estimate based on the direct interaction approximation (DIA),

both of which resulted in the ‘sweeping’ time being the characteristic timescale. Mc-

Comb et al. [30] studied numerical solutions to the DIA and local energy trans-

fer (LET) theories, and in contrast to Kraichnan’s asymptotic prediction for the

DIA, found that while neither the ‘sweeping’ timescale nor the inertial eddy-turnover

timescale were completely effective in collapsing the modal time-correlation data, the

inertial scaling became more dominant for both theories as Rλ was increased. Fi-

nally, Gotoh et al. [16] studied the modal time correlation using both DNS and DIA

at Rλ ∼ 35, and found that the sweeping timescale gave a poor collapse of the cor-

relation data from the DIA relative to the data from the DNS. In contrast to the

velocity modal time correlation function, the scalar modal time correlation function

has received little attention.

Having described and motivated some features of turbulent passive scalar mixing

that we would like to investigate, we now describe the methods that we will use. Our
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overall aim is to study the velocity-scalar cospectrum and modal time correlation

functions using a combination of theory and direct numerical simulation (DNS). It is

of interest to use approaches that have been shown to provide quantitative results for

the velocity statistics to problems involving a passive scalar, one example being the

recent use of the stretched spiral-vortex model to calculate the scalar spectrum [40]

for homogeneous but non-isotropic turbulence. Here we will work with two notable

theories that are successful in linking the Navier-Stokes equations and the Kolmogorov

phenomenology, namely, the stretched-spiral vortex model introduced by Lundgren

[29], and a Lagrangian reformulation of the direct-interaction approximation (DIA)

of Kraichnan [25].

The stretched spiral-vortex model of turbulence uses an ensemble of vortex tubes

to model the fine scales of turbulence. The vortex tubes do not interact except in

that they are stretched on average by the surrounding flow. The vortex tubes are

assumed to be straight, with no dependence of the velocity field on the coordinate

parallel to the tube axis. In each tube the vorticity is evolved by the Navier Stokes

equations and the scalar is evolved by the advection-diffusion equation. The axial

vorticity, the axial velocity, and the scalar are each wound up into spirals by the

differential rotation of the cores of the vortices. Average flow statistics are calculated

by performing an average over time and space. This model gives good results for

energy [29] and scalar spectra [40] individually. By also performing an average over

vortex orientation the model was used to calculate vorticity and velocity-derivative

moments [41], as well as one-dimensional spectra [42]. Here we will use the model to

calculate the velocity-scalar cospectrum, as well as modal time correlation functions

of the velocity and scalar fields.

In contrast to the stretched-spiral vortex model where an ensemble of local asymp-

totic solutions to the Navier-Stokes equations are used to model turbulence, the DIA

seeks to use a set of statistical assumptions to close the equations for second or-

der statistics that result from the Navier-Stokes equations. Alternatively, the DIA

can be derived by truncating a renormalized perturbation expansion of the exact

equations for second order statistical quantities, see Leslie [27]. If the DIA is ap-
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plied in an Eulerian frame of reference, the resulting equations are not consistent

with the Kolmogorov form for the energy spectrum in the inertial range. However,

there are several Lagrangian reformulations of the DIA without this property, one

example being the sparse direct-interaction perturbation (SDIP), first introduced by

Kida and Goto [24] with the name Lagrangian direct-interaction approximation. It

is a renormalized closure theory for second-order turbulent statistics that applies a

similar procedure to Kraichnan’s direct-interaction approximation (DIA) [25] in a

Lagrangian framework. The SDIP is simpler than the Lagrangian history DIA of

Kraichnan [26], and yields the same integro-differential equations as the Lagrangian

renormalized approximation (LRA) of Kaneda [21]. The SDIP has been used to cal-

culate the energy spectrum [24], and the scalar spectrum [14]. Goto and Kida [15]

applied the SDIP to a simpler dynamical model to better understand the basis of

the approximation. In light of the importance of sparse coupling in the approxi-

mation, the name sparse direct-interaction perturbation was then chosen in place of

Lagrangian direct-interaction approximation. Here, we will use the SDIP to calculate

the velocity-scalar cospectrum. One advantage that the SDIP has over simulation

and experiment is the relative ease with which the cospectrum can be calculated for

a range of different Schmidt numbers.

To complement the above calculations we performed a DNS of turbulent mixing

of a passive scalar with a resolution of 5123 gridpoints. There have been a number of

numerical passive scalar mixing studies at comparable resolution, see Overholt and

Pope [37], or Yeung et al. [50]. Comparison with box turbulence simulations at

higher resolution but with no passive scalar suggest that at this resolution we can

expect to capture the beginning of the inertial range, see Kaneda et al. [23]. One

advantage of DNS is the ease with which different statistics can be calculated, and

here we report results for the velocity-scalar cospectrum, as well as the modal time

correlation functions of the velocity and scalar fields.

In Chapter 2 we discuss the velocity-scalar cospectrum. The cospectrum is defined,

and an inequality is derived that bounds the magnitude of the cospectrum using the

shell-summed energy and scalar spectra. This inequality is an extension of the one-
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dimensional cross-spectrum inequality to the three-dimensional shell-summed case,

and applied in particular to the velocity-scalar cospectrum. A new asymptotic form

for the cospectrum at low Schmidt number is derived, and this is compared with

results from large-eddy simulation (LES). Calculations of the cospectrum using the

stretched-spiral vortex model, the SDIP, and results from DNS are presented. The

SDIP results are for a range of Schmidt numbers, and the SDIP equation is shown

to be consistent with the asymptotic form at low Schmidt number derived earlier.

Comparison at Schmidt number order unity is made between theory, experiment, and

simulation. In Chapter 3 we discuss the Eulerian modal time correlation functions.

Results are presented for both the velocity and scalar fields using the stretched-spiral

vortex model. DNS results are also presented, and comparison is made with the

results from the model. In Chapter 4 the overall results are summarized, conclusions

are drawn, and possibilities for future work are discussed.
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Chapter 2 The Velocity-Scalar

Cospectrum

Throughout this chapter we will consider a passive scalar mixed by an incompressible,

statistically homogeneous and isotropic velocity field, ui(x, t). The scalar is assumed

to have a mean scalar gradient, µ, in the 1 direction, so that we can decompose the

scalar as µx1 + c(x, t). The scalar fluctuation c(x, t) is statistically homogeneous,

and axisymmetric about the x1 axis, but not isotropic. By definition it has zero

mean, c(x, t) = 0, where the overbar indicates an ensemble average. If we define the

velocity-scalar correlation by

Ruic(r) = ui(x, t) c(x + r, t), (2.1)

then the shell-summed velocity-scalar cospectrum is defined by

Cuic(k) =
1

(2π)3

∫
S

∫
V

Ruic(r)e
−ik·rdr dSk, (2.2)

where the S integral is a surface integral over a spherical shell in wavenumber space,

and the V integral is a volume integral over all space. The shell-summed cospectrum

has no imaginary part, as may be seen by rewriting the shell integral as an integral

over a hemisphere, ∫
S

e−ik·r dSk = 2

∫
Sh

cos(k · r) dSh
k , (2.3)

and it integrates to the scalar flux,

uic =

∫ ∞

0

Cuic(k)dk. (2.4)
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The shell-summed cospectrum is thus a measure of the distribution of the scalar flux

across scales.

One-dimensional spectra are often more convenient for experimental measurement,

and so we define the one-dimensional velocity-scalar cross spectrum by

F 1D
uic

(k3) =
1

2π

∫ ∞

−∞
Ruic(0, 0, r3)e

−ik3r3dr3. (2.5)

In general the cross spectrum may be complex, and can be split into real and imagi-

nary parts as

2 F 1D
uic

(k3) = C1D
uic

(k3) − i Q1D
uic

(k3), (2.6)

where C1D
uic

(k3) is the cospectrum and Q1D
uic

(k3) is the quadrature spectrum [3]. The

integral of the one-dimensional cospectrum over all wavenumbers is also equal to the

scalar flux,

uic =

∫ ∞

0

C1D
uic

(k3)dk3. (2.7)

The quadrature spectrum is related to phase differences between the Fourier compo-

nents of the scalar and the velocity fields. In Appendix A the quadrature spectrum

is shown to be zero for the case of isotropic incompressible turbulence and a mean

scalar gradient. It is also shown that only the cospectrum of the scalar and the ve-

locity component in the direction of the mean scalar gradient is non-zero, where this

holds for both the shell-summed and one-dimensional cospectra.

In this chapter we will investigate the velocity-scalar cospectrum using a combi-

nation of theory, simulation, and comparison with experiment. In section 2.1.1 an

upper bound is derived for the magnitude of the cospectrum in terms of the energy

spectrum and the shell-summed scalar spectrum. This has immediate implications

for the contribution of the smallest scales to the scalar flux in high Schmidt number

flows. At low Schmidt number we derive an asymptotic expression for the cospectrum

in the inertial-diffusive range. This derivation is based on an argument for the scalar

spectrum by Batchelor, Howells, and Townsend [2] , and we also show how their result

for the scalar spectrum is modified by the presence of a mean scalar gradient. The low
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Schmidt number asymptotic forms for the velocity-scalar cospectrum and the scalar

spectrum are compared with results from a large-eddy simulation.

In section 2.2 the cospectrum is calculated using the stretched-spiral vortex model.

The mean scalar gradient is held fixed, while the isotropic turbulent velocity field is

modeled using vortex tubes oriented with equal probability in all directions. For the

velocity field provided by the stretched-spiral vortex, the velocity-scalar cospectrum

can be divided into two additive components contributed by the velocity components

along the vortex axis, and in the plane normal to this axis, respectively. For the axial

velocity field, a new exact solution of the scalar advection-diffusion equation is found

exhibiting scalar variation in the direction of the vortex tube axis, allowing the scalar

evolution to be influenced by the axial velocity. This is important because the scalar

and the axial velocity evolve in a similar way, unlike the scalar and a given planar

component of the velocity, and leads to an important contribution to the velocity-

scalar correlation. An asymptotic expression is found for the cospectrum contributed

by this solution and the axial velocity, with the leading order term showing a k−5/3

range. This term is produced by the winding of the initial axial velocity field by

the axisymmetric vortex core. The next-order term gives a k−7/3 range, and arises

from the lowest order effect of the non-axisymmetric vorticity on the evolution of the

axial velocity. Its coefficient can be of either sign or zero depending on the initial

conditions. The contribution to the cospectrum from the velocity in the plane of

the vortex is also calculated, but no universal high wavenumber asymptotic form is

found. The integrals are evaluated numerically and it is found that the the resulting

cospectrum does not remain of one sign. Its form depends on the choice of the vortex

core velocity profile and time cutoff in the spectral integrals.

In section 2.3 the sparse direct-interaction approximation of Kida and Goto [24]

is used to calculate the cospectrum. In the inertial-convective range the Lumley

form µ ε1/3 k−7/3 is recovered, and the constant of proportionality is calculated. The

cospectrum is also calculated in the entire universal wavenumber range by numerical

solution of an integral equation, and results for a range of Schmidt numbers are

presented. The asymptotic form of the SDIP equation for low Schmidt number is
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derived, appropriate for wavenumbers in the inertial-diffusive and viscous-diffusive

wavenumber ranges. This form agrees with the asymptotic result of section 2.1 in the

inertial-diffusive range.

In section 2.4 we describe a DNS of turbulent passive scalar mixing, performed at

a Taylor Reynolds number of 265, and a Schmidt number of 0.7. Results are reported

for the cospectrum, and these are compared with the bound given by the cospectrum

inequality.

Finally, in section 2.5 we make a comparison between the results for the cospec-

trum from the stretched-spiral vortex model, the SDIP, the experiment of Mydlarski

and Warhaft [34], and our DNS.

2.1 The cospectrum at small and large Schmidt

numbers

Here we consider the effects of Schmidt number on the cospectrum, where the Schmidt

number is defined as the ratio of viscosity to diffusivity, Sc = ν/D. In later chapters

we will calculate the cospectrum using turbulence theory and DNS, but we can use

some simpler analysis to limit the possible behavior of the cospectrum, and in the case

of low Schmidt number to predict its asymptotic form. Firstly, in subsection 2.1.1

we find an upper bound for the magnitude of the cospectrum, and this is shown in

subsection 2.1.2 to have implications for the form of the cospectrum at high Schmidt

number. Then in subsection 2.1.3 we present an argument for the asymptotic form of

the cospectrum at low Schmidt number in the inertial-diffusive wavenumber range.

This derivation is similar to that used by Batchelor, Howells, and Townsend [2] for

the form of the scalar spectrum in the inertial-diffusive range. In subsection 2.1.4

we show how their result for the scalar spectrum is modified for the case of a mean

scalar gradient, allowing us to compare the asymptotic result for the cospectrum

with the bound given by the cospectrum inequality. Finally, in subsection 2.1.5 we

compare the results for the velocity-scalar cospectrum and the scalar spectrum in the
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inertial-diffusive range with results from a large-eddy simulation.

2.1.1 The cospectrum inequality

Here we will derive an upper bound for the magnitude of the shell-summed velocity-

scalar cospectrum in terms of the energy and scalar spectra. This bound has close ties

to the one-dimensional cross-spectrum inequality and coherence function, discussed

in Bendat and Piersol [3]. In effect, we are extending the one-dimensional cross-

spectrum inequality to the three-dimensional shell-summed case, and applying it in

particular to the velocity-scalar cospectrum.

It is convenient to use the formulation of the SDIP calculation in section 2.3,

where we first work in a periodic box of side L, and then take the limit L → ∞. For

consistency, we also adopt the convention used in that section for denoting integrals,

where the associated infinitesimal is placed beside the integration sign.

The velocity field ui(x, t) can be decomposed as

ui(x, t) =

(
2π

L

)3 ∑
k

ũi(k, t) exp(ik · x), (2.8)

where ki = 2π ni/L, and ni ∈ Z. The inverse Fourier transform is given by

ũi(k, t) =

(
1

2π

)3 ∫
d3xui(x, t) exp(−ik · x), (2.9)

and a similar transformation is defined for the scalar fluctuation, c(x, t). We then

define the second order statistical quantities

Ṽij(k, t, t) =

(
2π

L

)3

ũi(k, t) ũj(−k, t), (2.10)

Z̃(k, t, t) =

(
2π

L

)3

c̃(k, t) c̃(−k, t), (2.11)

W̃i(k, t, t) =

(
2π

L

)3

c̃(k, t) ũi(−k, t). (2.12)
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The double reference to the time t is included to be consistent with the definition of

more complicated Lagrangian quantities in section 2.3.

For a given instance in the ensemble, we have that

Re (c̃(k, t) ũ1(−k, t)) ≤ |c̃(k, t)| |ũ1(k, t)|, (2.13)

where we have used that ũ(−k, t) = ũ(k, t)∗. Taking an ensemble average we find

that

Re
(
c̃(k, t) ũ1(−k, t)

)
≤ | c̃(k, t) | | ũ1(k, t) | ≤

(
| c̃(k, t) |2 | ũ1(k, t) |2

)1/2

. (2.14)

The second inequality can be derived by considering the expression

( | c̃(k, t) | + ξ| ũ1(k, t) |)2, (2.15)

as a quadratic in the real number ξ, and requiring that it be non-negative.

Taking the limit L → ∞ we can relate Ṽij(k, t, t), Z̃(k, t, t), and W̃i(k, t, t) to

power spectral density functions. The shell-summed energy spectrum, E(k), scalar

spectrum, Ec(k), and velocity-scalar cospectrum, Cu1c(k), are given by

E(k) =
1

2

∫
dSk Ṽii(k, t, t), (2.16)

Ec(k) =

∫
dSk Z̃(k, t, t), (2.17)

Cu1c(k) =

∫
dSk W̃1(k, t, t), (2.18)

where
∫

dSk denotes a surface integral over a shell in wavenumber space, rather than

a solid angle integration. We will now use the fact that the shell-summed cospec-

trum is real. This can be seen from equation (2.18), and the relation W̃1(k, t, t) =

W̃1(−k, t, t)∗. Noting that the isotropy of the velocity field implies that Ṽ11(k, t, t) =
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E(k)/(6πk2), we deduce the inequality

Cu1c(k) ≤ 1

k

(∫
dSk Z̃(k, t, t)1/2

) (
E(k)

6π

)1/2

. (2.19)

Similarly we can show that inequality (2.19) holds for −Cu1c(k), and so it also holds

for the magnitude |Cu1c(k)|. The scalar spectrum is anisotropic, and so we cannot

perform the solid angle integration without further knowledge of Z̃(k, t, t). Nonethe-

less, we can find a bound in terms of the shell-summed scalar spectrum. Using the

Cauchy-Schwartz inequality we have that

∫
dSk Z̃(k, t, t)1/2 11/2 ≤

(∫
dSk Z̃(k, t, t)

)1/2 (∫
dSk

)1/2

=
(
4π k2 Ec(k)

)1/2
,

(2.20)

and so,

|Cu1c(k)| ≤
(

2 E(k) Ec(k)

3

)1/2

. (2.21)

It should be noted that a tighter bound might be deduced with more detailed knowl-

edge of the scalar anisotropy.

2.1.2 Implications of the bound

From (2.21) we see that the magnitude of the cospectrum is bounded by the geometric

mean of the scalar and energy spectra multiplied by a constant of order unity. To

discuss the implications of this, we first briefly review the phenomenology of the scalar

spectrum at different Schmidt numbers.

We assume in what follows that the Reynolds number is sufficiently large for an

inertial-convective range to exist. The Schmidt number is defined as the ratio of the

viscosity to the diffusivity, Sc = ν/D. We define kP as the wavenumber at the peak of

the energy spectrum or the scalar spectrum, whichever wavenumber is greater. The

Kolmogorov wavenumber is defined by kK = (ε/ν3)1/4, the Batchelor wavenumber

is given by kB = (ε/ν D2)1/4 = Sc1/2 kK , and the Obukhov-Corrsin wavenumber is
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given by kC = (ε/D3)1/4 = Sc3/4 kK . Then for wavenumbers in the inertial-convective

range the scalar spectrum has the form

Ec(k) ∝ εc ε−1/3 k−5/3, kP ¿ k ¿ min(kK , kC), (2.22)

where εc is the scalar dissipation, and the constant of proportionality is known as the

Obukhov-Corrsin constant, see Tennekes and Lumley [46]. For large Schmidt number

a different power law behavior is thought to exist in the viscous-convective range [1],

Ec(k) ∝ εc ν1/2 ε−1/2 k−1, kK ¿ k ¿ kB, Sc À 1. (2.23)

For very small Schmidt number, in the inertial-diffusive range,

Ec(k) ∝ εc D−3 ε2/3 k−17/3

(
1 +

2 D µ2

εc

)
, kC ¿ k ¿ kK , Sc ¿ 1. (2.24)

We show this in subsection 2.1.4 by modifying a result of Batchelor, Howells, and

Townsend [2] for the presence of a mean scalar gradient. There are other theoretical

predictions for the scalar spectrum in this range, for example, Gibson [11] found a k−3

wavenumber dependence. Finally, in the viscous-diffusive range the scalar spectrum

decays exponentially.

Now consider the velocity-scalar cospectrum for the case of large Schmidt number

in the viscous-convective range. According to (2.23) the scalar spectrum has a k−1

wavenumber dependence, whereas the energy spectrum will be decaying exponentially

with wavenumber because k À kK . Therefore, the bound given by inequality (2.21)

will decay exponentially in this range, and we expect that the cospectrum will also

decay exponentially. This would imply that the contribution to the mean scalar flux

at length scales smaller than the Kolmogorov lengthscale is very small, even if the

Schmidt number is very large. It should be noted that if the scaling law given by (2.23)

is correct, as the Schmidt number goes to infinity the scalar variance is unbounded,

see Dimotakis and Miller [8] for a discussion of this issue. More generally, if the

scalar flux has a weak Schmidt number dependence at large Schmidt number, then
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this should be apparent in a comparison between the mean scalar profile for mixing

layer flows at different Schmidt numbers, see Dimotakis [7] for a review of free shear

layer mixing in gases and liquids.

In contrast, for the case of small Schmidt number in the inertial-diffusive range,

the scalar spectrum has a wavenumber dependence of k−17/3 according to (2.24), the

energy spectrum has a k−5/3 wavenumber dependence because kP ¿ k ¿ kK , and

so the bound given by inequality (2.21) has a k−11/3 dependence. Therefore, in this

wavenumber range we do not necessarily have reason to expect exponential or power

law behavior of the cospectrum based on the inequality. However we will be able to

derive an asymptotic form for the inertial-diffusive range in subsection 2.1.3.

In subsection 2.3.6 the SDIP is used to solve for the cospectrum at a range of

Schmidt numbers, and a comparison is made of the resulting cospectra with the

bounds given by (2.21).

2.1.3 Asymptotic form in the inertial-diffusive range

We consider the case of low Schmidt number, and wavenumbers in the inertial-

diffusive range, kC ¿ k ¿ kK . The advection-diffusion equation for the scalar

fluctuation is given by

∂

∂t
c(x, t) + uj(x, t)

∂

∂xj

c(x, t) = D
∂2

∂xj∂xj

c(x, t) − µu1(x, t), (2.25)

where we note the gradient forcing term. This can be written in Fourier space as

[
∂

∂t
+ D k2

]
c̃(k, t) = −µ ũ1(k, t) − i

(
2π

L

)3 ∑
q

qj ũj(k − q, t) c̃(q, t). (2.26)

Following the argument of Batchelor, Howells, and Townsend [2] we note that the

convolution sum in equation (2.26) is dominated by wavenumbers q smaller than kC ,

that is |q| < kC . This is justified because the scalar spectrum drops off rapidly for

higher wavenumbers. Then assuming that k À kC , implies that |k − q| ' k. We

now argue that the timescales of ũj(k− q, t) and c̃(q, t) are much longer that that of
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c̃(k, t). This can be seen in the case of ũj(k−q, t) by comparing the inertial timescale

ε−1/3 k−2/3 with the diffusive timescale D−1 k−2 and using k À kC . Therefore, we can

make a stationary balance approximation, and neglect the time derivative in equation

(2.26). Multiplying by u1(−k, t), taking an ensemble average, and using the definition

of W̃i(k, t, t) (2.12) we find

W̃1(k, t, t) = − µ

D k2

(
2π

L

)3

ũ1(−k, t) ũ1(k, t)

− i

D k2

(
2π

L

)6 ∑
q

qj ũj(k − q, t) c̃(q, t) ũ1(−k, t).

(2.27)

We have already argued that |q| ¿ |k− q| ' k, and so we make the further approx-

imation that c̃(q, t) is statistically independent of ũj(k − q, t) and ũ1(−k, t). The

mean c̃(q, t) is zero, and so

W̃1(k, t, t) = − µ

D k2
Ṽ11(k, t, t). (2.28)

Taking the limit L → ∞, and using (2.16) and (2.18) to make contact with shell-

summed spectra we find

Cu1c(k) = − 2 µ

3 D k2
E(k). (2.29)

The wavenumber k is in the inertial range, and so

E(k) = K ε2/3 k−5/3, (2.30)

where K is the Kolmogorov constant, with the result,

Cu1c(k) = −2 µK

3 D
k−11/3 ε2/3. (2.31)

Thus the cospectrum has a k−11/3 power law wavenumber dependence in the inertial-

diffusive range. The asymptotic form (2.31) will be compared with results from LES

in subsection 2.1.5, and with the SDIP result in subsection 2.3.6. To compare with

the bound given by the cospectrum inequality we need to consider the effect of the
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mean scalar gradient on the scalar spectrum in the inertial-diffusive range, and this

will be the subject of the next subsection.

2.1.4 Effect of the scalar gradient on the scalar spectrum in

the inertial-diffusive range

Here we will see how the Batchelor, Howells, and Townsend [2] result for the scalar

spectrum is modified by the presence of a mean scalar gradient. Chasnov [5] studied

the scalar spectrum in the inertial-diffusive range using large-eddy simulation (LES),

and noted that the Batchelor result [2] for the scalar spectrum is still valid in the

presence of a mean scalar gradient when the scalar dissipation is replaced by εc +

2 D µ2. Here we will confirm this using a direct rederivation of the result, taking into

account the mean scalar gradient.

In the inertial-diffusive range we have already shown that an approximate equation

for c̃(k, t) is given by neglecting the time derivative in equation (2.26). Multiplying

by a similar expression for c̃(−k, t), and taking an ensemble average gives

c̃(k, t) c̃(−k, t) D2 k4 = µ2 ũ1(k, t) ũ1(−k, t)

−
(

2π

L

)6 ∑
p

∑
q

pj qi ũj(−k − p, t) ũi(k − q, t) c̃(p, t) c̃(q, t)

+ i µ

(
2π

L

)3 ∑
q

qi ũi(k − q, t) c̃(q, t) ũ1(k, t).

(2.32)

Again using |q| ¿ k, |p| ¿ k, and assuming the statistical independence of modes

at wavenumber q or p with modes at k − q, k, or k − p, we find

c̃(k, t) c̃(−k, t) D2 k4 = µ2 ũ1(k, t) ũ1(−k, t)

−
(

2π

L

)6 ∑
p

∑
q

pj qi ũj(−k − p, t) ũi(k − q, t) c̃(p, t)c̃(q, t).

(2.33)
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This may be simplified to

D2 k4 Z̃(k, t, t) = µ2 Ṽ11(k, t, t) + Ṽ11(k, t, t)

(
2π

L

)3 ∑
q

qj qj Z̃(q, t, t). (2.34)

The sum over q can be related to the scalar dissipation, and taking the limit L → ∞
and performing a surface integral in wavenumbers space leads to

Ec(k) =
2

3
E(k)D−2 k−4

(
µ2 +

εc

2 D

)
. (2.35)

We are in the inertial range, and so using the appropriate form of the energy spectrum

(2.30) we find

Ec(k) =
1

3
D−3 K ε2/3 εc k−17/3

(
1 +

2 D µ2

εc

)
. (2.36)

Equation (2.36) reduces to the Batchelor, Howells, and Townsend [2] result when the

mean scalar gradient µ is set to zero. Thus the effect of the mean scalar gradient is to

change the magnitude of the scalar spectrum, but not its wavenumber dependence.

As Chasnov [5] noted, the effect of the mean scalar gradient can be captured by

replacing the scalar dissipation with εc + 2 D µ2 in the original Batchelor, Howells,

and Townsend [2] result. We have performed an LES using a different subgrid model

to the one used by Chasnov [5], and we will compare with our results for the scalar

spectrum and velocity-scalar cospectrum in the next subsection.

We are now in a position to compare our asymptotic result for the cospectrum

in the inertial-diffusive range with the bound given by the cospectrum inequality.

Substituting (2.30) and (2.36) into (2.21) we find

|Cu1c(k)| ≤ 2

3
µK ε2/3 k−11/3 D−1

(
εc

2 D µ2
+ 1

)1/2

. (2.37)

Thus the bound exceeds the magnitude of our asymptotic result for the cospectrum

by a factor (εc/(2 D µ2) + 1)1/2.
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2.1.5 Large-eddy simulation at low Schmidt number

We performed a large-eddy simulation (LES) to verify the asymptotic results (2.31)

and (2.36) for the velocity-scalar cospectrum and scalar spectrum at low Schmidt

number in the inertial-diffusive range. Our simulation is similar to the LES of Chasnov

[5]. Chasnov made a comparison with the asymptotic form (2.36) for the scalar

spectrum, and found excellent agreement in the far inertial-diffusive range, but the

agreement in the near inertial-diffusive range was not as good. As was the case

for Chasnov, we do not need a subgrid model for the scalar because we resolve the

diffusive range, but our subgrid model for the velocity is different from that used by

Chasnov.

The LES was performed with 643 gridpoints, at a Taylor Reynolds number of

1500, and a Schmidt number of 2× 10−4. A statistically stationary state was reached

by forcing the velocity at the low wavenumbers using the same forcing scheme as

is described in section 2.4, and a mean scalar gradient acted as the source for the

scalar variance. Statistics were collected over thirty large-eddy turnover times, and

time-averaged spectra are reported.

We used the stretched-vortex SGS model of Misra and Pullin [32], with vortex

alignment according to the locally resolved strain rates (model 1a), and a spiral-

vortex type energy spectrum at the subgrid scales. Evaluation of the second-order

velocity structure function was used to calculate the subgrid energy, see Voelkl et

al. [47] and Pullin [38] for further details. This LES method has the advantage

of dynamically giving a value for the Kolmogorov constant, which we then use in

expressions (2.31) and (2.36).

The LES result for the scalar spectrum, and the asymptotic result given by

(2.36) are compared in Figure 2.1. The Obukhov-Corrsin wavenumber corresponds

to kC η ' 0.002, and so we can see that in the inertial-diffusive range the agreement

is quite good. The LES result for the velocity-scalar cospectrum, and the asymptotic

result given by (2.31) are compared in Figure 2.2. The agreement is reasonable for

wavenumbers in the inertial-diffusive range, although the asymptotic result is lower
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Figure 2.1: Comparison of the scalar spectrum from the LES (solid) and the low
Schmidt number asymptotic form given by equation (2.36).
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Figure 2.2: Comparison of the velocity-scalar cospectrum from the LES (solid) and
the low Schmidt number asymptotic form given by equation (2.31).
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Figure 2.3: Comparison of the energy spectrum from the LES (solid) and inertial
range form given by equation (2.30).

than the LES result. Thus, LES seems to confirm both asymptotic results for the

velocity-scalar cospectrum and the scalar spectrum, although of course any mech-

anism that requires a resolved viscous range has been neglected in our LES. For

reference, we show in Figure 2.3 the energy spectrum from the LES compared with

the inertial-range form (2.30), where we have again used the Kolmogorov constant

given by the LES.

2.2 Application of the stretched-spiral vortex model

Here we will use the stretched-spiral vortex model to calculate the velocity-scalar

cospectrum. In subsection 2.2.1 a new solution is found to the advection diffusion

equation where the scalar can show variation parallel to the vortex axis, and asymp-

totic expressions for the evolution of the velocity and scalar fields in the vortex tube

are described. In subsection 2.2.2 expressions are derived for the cospectrum con-

tributed by the axial velocity and also the velocity in the plane of the vortex. In

subsection 2.2.3 the expressions for the cospectrum are evaluated for a particular
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choice of initial conditions. The contribution from the axial velocity is evaluated us-

ing its asymptotic form for high wavenumber, but the contribution from the velocity

in the plane of the vortex can only be evaluated numerically.

2.2.1 Evolution of scalar and velocity fields in a stretched

vortex tube

We wish to find the evolution of the velocity and scalar fields in a vortex tube em-

bedded in a background linear velocity field. It will be important in this section to

distinguish between lab and vortex fixed frames, because the mean scalar gradient

is assumed to be fixed with respect to the laboratory frame. Therefore, we adopt a

temporary notation, where xi are vortex fixed axes, and x′
i are laboratory coordinates.

The vortex fixed coordinate, x3, is aligned with the vortex tube axis. The velocity

field of the vortex tube is assumed independent of x3, but may have a component

in the direction of the vortex axis. The scalar is in general a function of all three

spatial coordinates. The following analysis generalizes that of Pullin and Lundgren

[40], hereafter referred to as PL, by letting the scalar have an x3 dependence. The

effect of this change on the scalar spectrum is discussed in Appendix B.

It will be convenient for the moment to work with the total scalar field ct(x, t) =

µx′
1 + c(x, t), rather than the scalar fluctuation c(x, t). The Navier-Stokes equations

for the velocity ui and the vorticity ωi are

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂π

∂xi

+ ν∇2ui, (2.38)

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj
∂ui

∂xj

+ ν∇2ωi, (2.39)

and the advection-diffusion equation for the scalar ct(x1, x2, x3, t) is

∂ct

∂t
+ uj

∂ct

∂xj

= D∇2ct, (2.40)

where π is the pressure-density ratio, ν is the viscosity and D is the scalar diffusivity.
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The velocity field is decomposed as

ui = vi(x1, x2, t) + ai(t)xi, (2.41)

with a1 + a2 + a3 = 0 and a3 > a2 > a1. Summation over i is not implied. If the

support of the vorticity is compact in a domain surrounding x1 = x2 = 0 then the

velocity can be expressed in terms of a vector potential ψi(x1, x2, t) as

v1 =
∂ψ3

∂x2

, v2 = −∂ψ3

∂x1

, v3 =
∂ψ2

∂x1

− ∂ψ1

∂x2

. (2.42)

Now choose the gauge of ψi so that ∂ψi/∂xi = 0. Then,

ωi(x1, x2, t) = −∇2
2ψi, ∇2

2 ≡
∂2

∂x2
1

+
∂2

∂x2
2

. (2.43)

We also define a reduced pressure π∗ as follows

π∗(x1, x2, t) = π +
1

2
(a2

1x
2
1 + a2

2x
2
2 + a2

3x
2
3). (2.44)

Then we have the following equations for ω3, v3 and ct,

∂ω3

∂t
+

(
a1x1 +

∂ψ3

∂x2

)
∂ω3

∂x1

+

(
a2x2 − ∂ψ3

∂x1

)
∂ω3

∂x2

+ a3ω3 = ν∇2
2ω3, (2.45)

∂v3

∂t
+

(
a1x1 +

∂ψ3

∂x2

)
∂v3

∂x1

+

(
a2x2 − ∂ψ3

∂x1

)
∂v3

∂x2

+ a3v3 = ν∇2
2v3, (2.46)

∂ct

∂t
+

(
a1x1 +

∂ψ3

∂x2

)
∂ct

∂x1

+

(
a2x2 − ∂ψ3

∂x1

)
∂ct

∂x2

= − (a3x3 + v3)
∂ct

∂x3

+D∇2ct. (2.47)

It can be seen that (2.45) and (2.43) (i = 3) are sufficient to determine ω3(x1, x2, t)

and ψ3(x1, x2, t). Once these are solved (2.46) can be solved for v3(x1, x2, t), and

finally (2.47) can be solved for ct(x1, x2, x3, t).

We wish to consider the case where there is a mean gradient, µ, in the scalar in

the lab frame. We assume the mean gradient is along the x′
1 axis, where x′

i are lab

coordinates. The scalar field at time zero may then be decomposed as the sum of the
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linear gradient fixed in the lab frame, and a remainder, c′(x, 0) = c′(x1, x2, x3, 0),

ct(t = 0) = µx′
1 + c′(x, 0) (2.48)

= µ(M11x1 + M21x2 + M31x3) + c′(x, 0), (2.49)

where Mij(α, β, γ) is a rotation matrix describing a rotation from the x′
i axes to the

xi axes, such that x′
j = Mijxi, and where (α, β, γ) are the corresponding Euler angles

[42]. Noting that the equation governing the scalar is linear, we decompose the scalar

field at time t as

ct(x, t) = M11 c1(x, t) + M21 c2(x, t) + M31 c3(x, t) + c′(x, t), (2.50)

where

ci(x, 0) = µxi, (2.51)

and each of c1, c2, c3, c
′ solve equation (2.47). We now further specialize to the case

of a time independent axisymmetric strain field, a1 = a2 = −a/2, a3 = a, a > 0, and

also set the Schmidt number equal to unity, Sc = ν/D = 1.

Solution for c3 in terms of v3

A schematic is shown in Figure 2.4 of the winding of the axial velocity into a spiral.

Scalar variations in the axial direction are distorted by the spiraling axial velocity,

and we can capture this effect with the following analysis. We begin by defining the

material derivative D/Dt = ∂/∂t+ui ∂/∂xi and temporarily set ν = D = 0. Then we

can rewrite equation (2.47) for c3 as Dc3/Dt = 0, and it is clear that c3 is conserved

along paths χi(t) that satisfy dχi/dt = ui. Therefore, using the initial condition

(2.51) we have that c3(x, t) = µχ3(0) where χi(t) = xi. We can also rewrite equation

(2.46) as Dv3/Dt = −a v3, so that v3(X, t) = exp(−a t) v30 where v30 is a constant,

and
dχ3(t)

dt
= a χ3(t) + e−a t v30. (2.52)
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Scalar Gradient
at t = 0

t = 0

Vortex Tube

u

t > 0

3

Figure 2.4: Schematic representation of the winding of the axial velocity in a vortex
structure. Scalar variations in the axial direction are in turn distorted by the axial
velocity.

This equation can be solved to give

χ3(0) = χ3(t) e−a t − v3(x1, x2, t)
1

a
sinh(at), (2.53)

so that

c3(x, t) = µ (e−a tx3 − v3(x1, x2, t)
1

a
sinh(a t)). (2.54)

It is easily verified by direct substitution that this solution (2.54) for c3 is also valid

in the case when ν 6= 0 if Sc = ν/D = 1. To simplify the analysis, we subsequently

assume Sc = 1.

Solutions for c1, c2 and the axial velocity and vorticity

Both c1 and c2 have no x3 dependence initially, and so from equation (2.47) it is clear

that they will be independent of x3 at later times. We are thus motivated to study

solutions to equation (2.47) when there is no x3 dependence,

∂c1

∂t
+

(
a1x1 +

∂ψ3

∂x2

)
∂c1

∂x1

+

(
a2x2 − ∂ψ3

∂x1

)
∂c1

∂x2

= D∇2c1. (2.55)
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It is convenient to work in polar coordinates (r, θ) with x1 = r cos θ, x2 = r sin θ, and

introduce the transformation [29],

S(t) = ea t, (2.56)

ρ = S(t)1/2 r,

τ =
1

a
(S(t) − 1),

ψ3(r, θ, t) = Ψ3(ρ, θ, τ),

ω3(r, θ, t) = S(t)W(ρ, θ, τ),

v3(r, θ, t) = S(t)−1 U(ρ, θ, τ),

c1(r, θ, t) = Φ(ρ, θ, τ).

Equations (2.46) and (2.55) can then be expressed in essentially the same form,

∂U
∂t

+
1

ρ

(
∂Ψ3

∂θ

∂U
∂ρ

− ∂Ψ3

∂ρ

∂U
∂θ

)
= ν ∇2

2 U , (2.57)

where the equation is also valid if (U , ν) are replaced with (Φ, D). Approximate

solutions for W , Ψ3, U and Φ can be found using a two time analysis [40]. These

solutions are asymptotically correct for large τ . The solution for the axial vorticity

and the stream function takes the form

W =
∞∑
−∞

ωn(ρ, τ) exp(i n θ), ω−n = ω∗
n, (2.58)

Ψ3 =
∞∑
−∞

ψn(ρ, τ) exp(i n θ), ψ−n = ψ∗
n, (2.59)

where the Fourier coefficients for n 6= 0 are

ωn(ρ, τ) = fn(ρ) exp(−i n Ω(ρ) τ − ν n2 Λ2 τ 3/3), (2.60)

ψn(ρ, τ) = τ−2 hn(ρ) exp(−i n Ω(ρ) τ − ν n2 Λ2 τ 3/3), (2.61)
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with

hn(ρ) =
fn(ρ)

n2 Λ2
, Λ(ρ) =

dΩ(ρ)

dρ
. (2.62)

The θ averaged angular velocity Ω(ρ) is related to the zeroth harmonic of the vorticity

and to ψ0 by

ω0(ρ) =
1

ρ

∂(ρ2Ω)

∂ρ
, Ω(ρ) = −1

ρ

∂ψ0

∂ρ
. (2.63)

It should be noted that we assume Λ < 0 in order for the expansion in large

τ to be valid. The expressions for ωn are valid to O(1) for n 6= 0. However ω0

(and hence Ω) is constant in time to within terms of order τ−2. The functions fn(ρ)

may be viewed as initial conditions that define a spiral vortex structure although the

solution is of course only valid for large τ . The above solution for the axial vorticity

essentially describes the winding of the non-axisymmetric part of the vorticity field

by the axisymmetric part (the core). The solution for the stream function may be

rewritten in the form

Ψ3 = Ψ(0) + τ−2 Ψ(2),

Ψ(2) =
∞∑

−∞,n6=0

Ψ(2)
n exp(i n(θ − Ωτ)),

Ψ(2)
n = hn(ρ) exp(−ν n2 Λ2 τ 3/3). (2.64)

The asymptotic solutions for the scalar and the axial velocity are then given by (to

order τ−1)

Φ(ρ, θ, τ) = Φ(0) + τ−1

∞∑
−∞,n6=0

Φ(1)
n exp(i n(θ − Ω τ)),

Φ(0) =
∞∑
−∞

Φ(0)
n (ρ, τ) exp(i n(θ − Ω τ)),

Φ(0)
n = Φ̌(0)

n (ρ) exp(−D n2 Λ2 τ 3/3),

Φ(1)
n =

i

ρ

∞∑
−∞,m6=0

(
m Ψ(2)

m

∂ Φ
(0)
n−m

∂ ρ
− (n − m)

∂ Ψ
(2)
m

∂ ρ
Φ

(0)
n−m

)
, (2.65)
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Scalar Gradient Vortex Tube

Figure 2.5: Schematic representation of a stretched vortex structure and the mean
scalar gradient.

U(ρ, θ, τ) = U (0) + τ−1

∞∑
−∞,n6=0

U (1)
n exp(i n(θ − Ω τ)),

U (0) =
∞∑
−∞

U (0)
n (ρ, τ) exp(i n(θ − Ω τ)),

U (0)
n = Ǔ (0)

n (ρ) exp(−ν n2 Λ2 τ 3/3),

U (1)
n =

i

ρ

∞∑
−∞,m6=0

(
m Ψ(2)

m

∂ U (0)
n−m

∂ ρ
− (n − m)

∂ Ψ
(2)
m

∂ ρ
U (0)

n−m

)
, (2.66)

where the initial scalar field is given by the functions Č
(0)
n (ρ) and the initial axial

velocity field is given by the functions Ǔ (0)
n (ρ). It should be emphasized that this

scalar solution is only valid when the initial conditions have no x3 dependence, as is

the case for c1 and c2.

2.2.2 Calculation of the cospectrum

We wish to calculate the velocity-scalar cospectrum using the stretched-spiral vortex

model. The important elements of our calculation are shown schematically in Figure

2.5. We will consider the scalar gradient fixed in the lab frame. The vortex struc-

tures are stretched in the axial direction, and there is a random distribution of the

orientation of the structure axes with respect to the lab frame.
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We will first consider the shell-summed cospectrum defined by equation (2.2).

Here we will again adopt the temporary notation where xi are vortex fixed axes,

primed quantities indicate the lab frame, and of course k = k′, so that equation (2.2)

is rewritten as

Cu′
ic
(k) =

1

(2π)3

∫
S

∫
V

Ru′
ic
(r′)e−ik′·r′dr′ dSk′ . (2.67)

We suppose there is a box populated by a collection of stretched vortex tubes. The

vortex tubes do not interact except in that each vortex tube is stretched on average by

the other vortex tubes. We assume that the vortex structures are distributed sparsely

enough so that the overlapping velocity and scalar fields from the vortex tubes do

not contribute strongly to the fine scales. It is further assumed that a statistical

equilibrium has been reached whereby the structures are created and decay at the

same rate. The average in the definition of the scalar-velocity correlation (2.1) is then

interpreted as an average over time, space, vortex orientation, and initial conditions

of one vortex tube,

Ru′
i c(r

′) = N c 〈<

∫ tc

0

∫
V

u′
i(x

′, t) c(x′ + r′, t) dx′ dt > 〉, (2.68)

where N c is the rate of creation of vortex tubes per unit time and per unit volume,

tc is a typical vortex lifetime, 〈〉 indicates an average over initial conditions, and <>

indicates an average over vortex orientation. The average over vortex orientation is

defined using the Euler angles α, β, γ that rotate the lab frame to the vortex fixed

frame [42],

< f(Mij) >=
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

f(Mij) P (α, β, γ) sin α dα dβ dγ, (2.69)

where P (α, β, γ) is the probability density function of the Euler angles, and Mij is the

associated rotation matrix. To match with experiment we specialize to the case of an

isotropic velocity field and set P = 1 so that all orientations are equally likely. We

now rewrite equation (2.67) by changing the ordering of the averages, substituting

u′
i = Mjiuj and changing integration variables from r′ to r, from k′ to k, and from
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x′ to x. It is also convenient to replace the scalar fluctuation, c(x, t), with the total

scalar field, ct(x, t), and this is justified because the average of the velocity field is

zero. Lastly, we substitute vj(x, t) for uj(x, t), neglecting any contribution from the

strain field. The resulting expression is

Cu′
ic
(k) =

N c

(2π)3
< 〈

∫
S

∫
V

∫ tc

0

∫
V

Mji vj(x, t) ct(x + r, t) e−ik·r dx dt dr dSk 〉 > .

(2.70)

Simplification using symmetries in the distribution of initial conditions

Next we use some symmetries in the distribution of the initial conditions of the

velocity and the scalar to simplify (2.70). For a given vortex tube let the initial v3

distribution be v30 (say at the time when the tube is created). We will consider

the effects of the transformation v30 to −v30. Clearly v3(x, t) changes to −v3(x, t)

because equation (2.46) is linear and homogeneous. It is also clear that v1 and v2

are unaffected as they have no x3 dependence. From (2.51) we see that initially

∂c1/∂x3 = ∂c2/∂x3 = 0. Then by taking the partial derivative with respect to x3

of equation (2.47) we see that ∂c1/∂x3 = ∂c2/∂x3 = 0 for all times. It is then clear

from equation (2.47) that v3 has no influence on the evolution of c1 or c2. Finally, it

is clear that the first term in expression (2.54) for c3 is unaffected by changes in v30,

and that the second term will change sign when v30 changes sign.

Therefore, if we assume that for each initial distribution of velocities v1(x, 0) and

v2(x, 0) that v3(x, 0) = v30 is as likely as v3(x, 0) = −v30, then performing the average

over the initial conditions will eliminate some terms that we now neglect. At this

stage we also neglect the remainder term c′ in the expression (2.50) for ct(x, t). This

may be justified by noting that c′(x, t) depends linearly on c′(x, 0), and making the

approximation that c′(x, 0) and vj(x, 0) are statistically independent. We therefore

replace Mji vj(x, t) c(x + r, t) in expression (2.70) with

[M1iv1 + M2iv2](x, t) [M11 c1 + M21 c2 + M31 µ e−at x3](x + r, t) −
M3iv3(x, t) [M31 µ v3

1

a
sinh(at)](x + r, t). (2.71)
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For simplicity we now replace the average over initial conditions with one partic-

ular initial condition. Using the integrals

1

8π2

∫
Mij Mk1 sin α dα dβ dγ =

1

3
δikδj1 (2.72)

to perform the orientation average gives Cu′
2c = Cu′

3c = 0 and,

Cu′
1c(k) =

1

3

N c

(2π)3

∫
S

∫
V

∫ tc

0

∫
V

[v1(x, t) c1(x + r, t) + v2(x, t) c2(x + r, t)

− v3(x, t) µ
1

a
sinh(at) v3(x + r, t) ]e−ik·r dx dt dr dSk. (2.73)

Noting that v1, v2, v3, c1, c2 have no x3 dependence we can replace N c
∫ tc

0

∫
V

dx dt

with N
∫ tc

0

∫ ∞
−∞

∫ ∞
−∞ dx1 dx2 S(t) dt where N is the rate of creation of vortex length

per unit time and per unit volume, and the factor S(t) arises from the lengthening

over time of the vortex tube. Defining the two dimensional Fourier transform of a

function f(x1, x2) by

f̂(k1, k2) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i k1x1−i k2x2 f(x1, x2) dx1 dx2, (2.74)

and dividing the expression (2.73) into contributions from the axial velocity (a) and

planar velocity (p), we find that

Cu′
1c(k) = C

(p)

u′
1c(k) + C

(a)

u′
1c(k), (2.75)

where

C
(p)

u′
1c(k) =

N(2π)2

3

∫ tc

0

∫ 2π

0

(v̂1 ĉ1
∗ + v̂2 ĉ2

∗) k dθk S(t) dt, (2.76)

C
(a)

u′
1c(k) = −N(2π)2

3

∫ tc

0

∫ 2π

0

(
µ

1

a
sinh(at) v̂3 v̂3

∗
)

k dθk S(t) dt, (2.77)

and k1 = k cos θk and k2 = k sin θk.
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Contribution from the planar velocity:C
(p)

u′
1c

We now consider the contribution to the cospectrum from correlations between the

planar velocities (v1, v2) and c1 and c2 in equation (2.76). We can simplify the analysis

by relating (v̂1, v̂2) to ω̂3. Using ωi = εijk ∂vk/∂xj, assuming that the velocity field

decays sufficiently quickly as x1 or x2 become large, and defining k3 = 0 gives ω̂l =

i εlmn kmv̂n. The assumption of incompressibility gives kl v̂l = 0. Therefore v̂l is

orthogonal to kl and ω̂l, and,

v̂l = α εlmn km ω̂n = −α i k2v̂l. (2.78)

Thus the scalar α is determined and v̂l(k1, k2) = i k−2 εlmn km ω̂n. We are interested

in the components of the velocity in the plane,

v̂1(k1, k2) =
i

k
sin θk ω̂3, v̂2(k1, k2) = − i

k
cos θk ω̂3. (2.79)

Then from equation (2.76) we have that

C
(p)

u′
1c(k) =

1

3
i N (2π)2

∫ tc

0

∫ 2π

0

ω̂3 (sin θk ĉ∗1 − cos θk ĉ∗2) dθk S(t) dt. (2.80)

Letting

ω3 =
∞∑

n=−∞
ωn(r, t) exp(i n θ), (2.81)

and using

∫ 2π

0

exp(i n θ − ikr cos(θ − θk)) dθ = (−i)n2πJn(kr) exp(i n θk), (2.82)

gives

ω̂3 =
1

2π

∞∑
n=−∞

(−i)n exp(i n θk) Iω
n (k, t), (2.83)

where

Iω
n (k, t) =

∫ ∞

0

ωn(r, t) Jn(k r) r dr. (2.84)
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We will use the solution (2.65) for c1 and c2, but will neglect terms of order τ−1.

Using the initial conditions (2.51) we see that for c1

Φ̌
(0)
1 =

µ ρ

2
, Φ̌

(0)
−1 =

µ ρ

2
, (2.85)

and that for c2

Φ̌
(0)
1 = −i µ ρ

2
, Φ̌

(0)
−1 =

i µ ρ

2
. (2.86)

Note that because the solutions for the scalar and the vorticity are only valid asymp-

totically in time, we should specify the initial conditions at some initial time t1 > 0.

However, we make the approximation t1 → 0, and the resulting integrals are conver-

gent at time zero.

It is convenient to define

Ic
1 =

µ

2

∫ ∞

0

exp(−i Ω(ρ) τ − D Λ(ρ)2 τ 3/3) J1(k r) ρ r dr

=
µ

2(1 + aτ)

∫ ∞

0

exp(−i Ω(ρ) τ − D Λ(ρ)2 τ 3/3) J1

(
k ρ√

1 + aτ

)
ρ2 dρ.

(2.87)

Then using J−1 = −J1 and equation (2.82) we have that

ĉ1 =
1

2π

(
(−i) exp(i θk) Ic

1 + (−i)−1 exp(−i θk) (−Ic
1)

∗) , (2.88)

ĉ2 =
1

2π

(
(−i) exp(i θk) Ic

1 (−i) + (−i)−1 exp(−i θk) (−Ic
1)

∗ i
)
. (2.89)

Substituting (2.88), (2.89) and (2.83) into (2.80), and after some algebra we find

C
(p)

u′
1c(k) =

1

3
N

∫ tc

0

∫ 2π

0

i
∞∑

n=−∞
(−i)n exp(i n θk) Iω

n ((Ic
1)

∗ − Ic
1) dθk S(t) dt. (2.90)

Therefore only n = 0 makes a contribution and

C
(p)

u′
1c(k) =

4π

3
N

∫ tc

0

Iω
0 Im(Ic

1) S(t) dt. (2.91)
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Finally we can evaluate Iω
0 in terms of Ω(r′, 0) as follows,

Iω
0 =

∫ ∞

0

J0(k r) ω0(r, t)r dr

=

∫ ∞

0

J0

(
k ρ√

1 + aτ

)
W0(ρ, τ)ρ dρ, (2.92)

where W0(ρ, τ) is the θ average of W(ρ, θ, τ). Note that unlike the analysis in subsec-

tion 2.2.1 where Ω was taken as constant in time in the asymptotic solution for the

scalar and vorticity spirals, we must now take into account the evolution in time of

Ω(r′, t) and W0(r
′, t). It is easy to show that W0 evolves according to a heat equation

in a cylindrical geometry [41]. This can be solved using a Green’s function in terms

of the vorticity distribution at t = 0,

W0(ρ, τ) = 2π

∫ ∞

0

W0(r
′, 0)

[
1

4πντ
exp

(−(ρ2 + r′2)
4ντ

)
I0

(
ρr′

2ντ

)]
r′dr′. (2.93)

Substituting this into (2.92) and performing the ρ integral gives

Iω
0 = exp

(−ντk2

1 + aτ

) ∫ ∞

0

J0

(
r′k√

1 + aτ

)
W0(r

′, 0) r′ dr′. (2.94)

If we use (2.63) to relate ω0 to Ω and note that ω0 and W0 coincide at t = 0, we find

that

Iω
0 = exp

(−ντk2

1 + aτ

)
k (1 + aτ)−1/2

∫ ∞

0

J1

(
r′k√

1 + aτ

)
Ω(r′, 0) r′2 dr′. (2.95)

This expression for Iω
0 cannot be evaluated using the method of stationary phase

unlike the corresponding integrals for higher harmonics. Therefore C
(p)

u′
1c(k) does not

have a universal form at high wavenumber, and in fact depends on the choice of

Ω(r′, 0). Combining equations (2.91), (2.87) and (2.95) gives

C
(p)

u′
1c(k) =

2π µ

3
k N

∫ tc

0

exp

(−ντk2

1 + aτ

)
(1 + aτ)−3/2 S(t) T1(τ, k) T2(τ, k) dt (2.96)
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where

T1(τ, k) = −
∫ ∞

0

J1

(
k ρ√

1 + aτ

)
sin(Ω τ) exp(−D Λ2 τ 3/3) ρ2 dρ (2.97)

T2(τ, k) =

∫ ∞

0

J1

(
r′k√

1 + aτ

)
Ω(r′, 0) r′2 dr′ (2.98)

This expression is evaluated for a particular choice of vortex core in subsection 2.2.3.

Unlike the calculation of C
(a)

u′
1c discussed in the next section, here we only calculate

the lowest order contribution to C
(p)

u′
1c. This is because of the complexity involved in

proceeding to higher order, and also because, as we have seen, the asymptotic form of

C
(p)

u′
1c is dependent on the initial conditions. We will use this lowest order contribution

in §2.2.3 to show that the planar contribution is comparable in magnitude to the axial

contribution.

Contribution from the axial velocity:C
(a)

u′
1c

We now wish to consider the contribution from correlations between the axial velocity

v3 and the second term of c3. Using expression (2.77) and defining

v3(r, θ, t) =
∞∑

n=−∞
v3,n(r, t) exp(i n θ), (2.99)

we find that

C
(a)

u′
1c(k) = − µ

3a
k N 2π

∫ tc

0

∞∑
n=−∞

|Iu
n |2 sinh(at) S(t) dt, (2.100)

where

Iu
n =

∫ ∞

0

Jn(kr) v3,n(r, t) r dr. (2.101)

This is similar in structure to the expression for the energy spectrum contributed by

the axial velocity [40]. Note that this contribution is negative, consistent with the

experimental results of Mydlarski and Warhaft [34], and our DNS results in section

2.4. We can now use the asymptotic solution for v3 to evaluate Iu
n . We first consider
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the contribution from the U (0) term. Using (2.66), the integral in r for Iu
n may be

evaluated using the method of stationary phase, giving

|Iu
n |2 =

ρn |Ǔ (0)
n (ρn)|2

S7/2 Λ′(ρn) k τ n
exp

(
−2 ν n2 Λ2(ρn)τ 3

3

)
, (2.102)

where ρn is the point of stationary phase. If we approximate S(t) ' a τ (valid for

a τ À 1) then ρn is related to τ by

τ '
(

k

n a1/2 |Λ(ρn)|
)2/3

. (2.103)

We now approximate sinh(at) by 1
2
exp(at) (making an O(τ−2) error) and change

integration variable from t to ρ = ρn. Using |Ǔ (0)
−n| = |Ǔ (0)

n | and letting tc → ∞ we

find,

C
(a)

u′
1c(k)(0) = −4πµN

9
k−5/3 a−8/3 exp

(
−2 ν k2

3 a

) ∞∑
n=1

n2/3

×
∫ ∞

0

ρ |Ǔ (0)
n (ρ)|2 |Λ(ρ)|2/3 dρ, (2.104)

where we have neglected the zeroth harmonic.

The next-order contribution from C
(a)

u′
1c

Now consider the next-order contribution by including terms involving U (1)
n . We keep

only terms O(τ−1) and use stationary phase to evaluate the r integral to find

|Iu
n |2 =

ρn

(
Ǔ (0)

n (ρn)U (1)
n (ρn)∗ + U (1)

n (ρn) Ǔ (0)
n (ρn)∗

)
S7/2 Λ′(ρn) k τ 2 n

exp

(
−ν n2 Λ2(ρn)τ 3

3

)
.

(2.105)
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Again approximating sinh(at) by 1
2
exp(at) for at À 1, changing variables from t to

ρn = ρ, using |Ǔ (0)
−n| = |Ǔ (0)

n | and letting tc → ∞ we find

C
(a)

u′
1c(k)(1) = −8πµN

9
k−7/3 a−7/3 exp

(
−ν k2

3 a

) ∞∑
n=1

n4/3

×
∫ ∞

0

|Λ(ρ)|4/3 Re
(Ǔ (0)

n (ρ)Π∗
n

)
dρ, (2.106)

where

Πn = i
∑
m6=0

exp

(
−ν k2 (m2 + (n − m)2)

3 a n2

)

×
(

fm(ρ)

m Λ2

∂

∂ρ
(Ǔ (0)

n−m(ρ)) − n − m

m2
Ǔ (0)

n−m(ρ)
∂

∂ρ

(
fm(ρ)

Λ2

))
. (2.107)

This contribution may be positive or negative, and may change sign as k varies. Note

that the coefficient for this contribution is an integral involving the initial conditions

for the axial velocity (Ǔ (0)
n (ρ)), the axial vorticity (fm(ρ)) and the radial derivative of

the theta averaged angular velocity (Λ = dΩ/dρ). The following argument could be

made to make this coefficient zero. The functions fn(r) describe the initial condition

for the axial vorticity. We can write without loss of generality fn(r) = exp(i n θn +

i n δ) |fn(r)| where the θn are constant offset angles and δ then fixes the orientation of

the non-axisymmetric part of the initial axial vorticity. Then C
(a)

u′
1c(k)(1) only depends

on δ through Π∗
n. It is clear that if we assume δ is distributed uniformly for a given

set of functions Ǔ (0)
n (ρ) then C

(a)

u′
1c(k)(1) will be zero. That is, if the initial conditions

for the axial vorticity and the axial velocity are uncorrelated then this first-order

correction to C
(a)

u′
1c will give no contribution. Indeed changing the sign of the fm’s and

leaving everything else constant will change the sign of this contribution.

Recall that earlier in the derivation we assumed that for a given initial condition

for the velocity in the plane of the vortex, that either direction was as likely for

the initial condition of the axial velocity. In other words it was assumed that the

statistics of the initial velocity field do not possess chirality. This is consistent with

the existence of a correlation between the orientation of the initial conditions of the
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axial velocity and the axial vorticity. Indeed changing the sign of Ǔ (0)
n (ρ) has no effect

on C
(a)

u′
1c(k)(1).

In summary, we have found an expression for the axial contribution as a sum of

two terms. The first term, expression (2.104), has a k−5/3 power law range. This is

produced by the winding of the initial axial velocity field by the axisymmetric vortex

core. The next-order term, expression (2.106), has a k−7/3 power law range, and arises

from the lowest order effect of the non-axisymmetric vorticity on the evolution of the

axial velocity.

2.2.3 Result for a specific choice of initial conditions

We now evaluate (2.96), (2.104) and (2.106) for a particular choice of initial conditions.

This will enable us to make a numerical comparison with experiment, theory, and

simulation in a later section. We no longer need to distinguish between laboratory

and vortex fixed coordinates, and so drop the prime indicating laboratory coordinates.

For simplicity and consistency we will choose simple initial conditions similar to those

considered for the scalar spectrum by PL. We will use a line vortex as the initial

condition for the vortex core so that

Ω(ρ, 0) =
Γ

2π ρ2
, Λ(ρ, 0) = − Γ

π ρ3
, (2.108)

where Γ is the circulation. In general this choice for the vortex core might cause

problems as ρ → 0, but our choice for the non-axisymmetric part of the axial vorticity

and the axial velocity will ensure that the integrals in (2.104) and (2.106) converge.

Contribution of the axial velocity

We first consider the contribution of the axial velocity. The initial condition for the

non-axisymmetric component of the axial vorticity is chosen to be

ω3(r, θ, 0) = 2 f0 g(ρ) sin(2θ), (2.109)
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so that f2 = −i f0 g and f−2 = i f0 g where f0 is a dimensional constant. We also

assume the initial condition for the axial velocity to be

v3(r, θ, 0) = 2 u0 g(ρ) cos θ, (2.110)

so that Ǔ (0)
1 = u0 g and Ǔ (0)

−1 = u0 g. Then

C(a)
u1c(k) = −4π µN

9
k−5/3 a−8/3 exp(−2ν k2

3 a
) u2

0 B1

−8π µN

9
k−7/3 a−7/3 exp(−2ν k2

a
) f0 u2

0 B2, (2.111)

where

B1 =

∫ ∞

0

ρ g(ρ)2 |Λ(ρ)|2/3 dρ, (2.112)

B2 =

∫ ∞

0

|Λ(ρ)|4/3

(
g2

2 Λ2

d g

d ρ
+

g2

4

d

d ρ

( g

Λ2

))
dρ. (2.113)

We now choose a simple form for g(ρ). Letting r0 be a characteristic vortex radius

we set g(ρ) = 1 for r0/2 < ρ < r0, and zero otherwise. Note that the cutoffs in g(ρ) do

not create a spurious contribution at high wavenumber to the form of the cospectrum

as we only use g(ρ) to evaluate coefficients for the axial velocity contribution. Then

B1 and B2 may be evaluated, taking care to deal with the derivatives at the cutoffs

in g(ρ),

B1 =

(
Γ

π

)2/3

log 2, B2 =
3π2/3

8

r2
0

Γ2/3
. (2.114)

We next approximate the strain rate using a = (ε/(15ν))1/2 and choose f0 = Γ/r2
0,

u0 = Γ/r0. Then we can write

C
(a)
u1c(k)

µ ε−1/4 ν7/4
=

− 1

36
log 2 π1/3 15−1/6 (kη)−5/3 exp(−2.58 (kη)2)

(
N r2

0

a

)(
Γ

ν

)8/3 (
a r2

0

4ν

)−2

− 1

48
π5/3 15−1/3 (kη)−7/3 exp(−7.75 (kη)2)

(
N r2

0

a

) (
Γ

ν

)7/3 (
a r2

0

4ν

)−2

,

(2.115)
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where η is the Kolmogorov length scale. It is interesting to find the ratio of the two

terms in the above expression,

(kη)−2/3 3π4/3

4 log 2
15−1/6

(
Γ

ν

)−1/3

exp(−5.17 (kη)2). (2.116)

Thus the second term becomes less important as the vortex Reynolds number in-

creases.

It is now necessary to estimate N r2
0/a, Γ/ν and a r2

0/(4ν). We assume a value of

Γ/ν = 1000 and let r0 be given by the Taylor length scale. In section 2.5 we compare

with the experiment of Mydlarski and Warhaft [34], and so all other parameters except

N are taken from the table of parameters in that paper for a Taylor Reynolds number

of 582. Also in order to compare with this experiment we will need to convert our shell-

summed cospectrum to a one-dimensional cospectrum. The appropriate relationship

is derived in Appendix A,

C1D
u1c(k3) =

3

4

∫ ∞

k3

k2 + k3
2

k3
Cu1c(k) dk. (2.117)

We note the factor of 2 in the relationship between the one-dimensional cross spectrum

and cospectrum. It is interesting to observe that if the one-dimensional cospectrum

had been measured in the same direction as the velocity component used (u1) (i.e.,

if C1D
u1c(k1) had been measured), then the axial velocity would give no contribution

because the axial velocity does not generate small scale scalar structure in the axial

direction.

To estimate N we find an expression involving N for the energy dissipation from

the model and compare it with the experimental value. The energy dissipation for

the model is given by

ε = 3νa2 + 2ν

∫ ∞

0

k2 (E0(k) + Es(k) + Eωθ
) dk. (2.118)

The first term is the dissipation from the strain field. The remaining three terms

are the dissipation associated with the vortex core, (axial) vortex spiral, and axial
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Figure 2.6: The 1D cospectrum contributed by the axial velocity from the stretched-
spiral vortex model. Dashed, -5/3 component. Dotted, -7/3 component. Solid, both
components.

velocity, respectively. This is equation (37) in Pullin and Saffman [41], except that we

now also include the leading order dissipation from the axial velocity. An expression

for Eωθ
is given by equation (66) of PL [40]. Expressions for Es and E0 are given in

Pullin and Saffman [41], and were evaluated for the current choice of initial conditions.

The core dissipation was found to be

2ν

∫ ∞

0

k2 E0 dk =
Γ2 N

8 π

∫ τ2

τ1

1 + aτ

τ
dτ. (2.119)

To obtain a finite value we must choose reasonable time cutoffs τ1 and τ2, and, fol-

lowing Pullin et. al. [39] we choose aτ1 = 1 and τ2 = (Γ/ν)−2/3 10 r2
0/(4ν).

The normalized one-dimensional cospectrum contributed by the axial velocity,

obtained from (2.115) and (2.117), is shown in Figure 2.6 where the k−5/3 and the

k−7/3 terms are also shown separately for comparison.
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Figure 2.7: Comparison of the 1D cospectrum contributed by the axial velocity and
the planar velocity from the stretched-spiral vortex model. Solid, planar contribution.
Dashed, axial contribution.

Contribution of the planar velocity

Equation (2.96) for the contribution to the cospectrum of the velocity in the plane

of the vortex cannot in general be evaluated analytically or asymptotically. It was

instead evaluated numerically for different choices of the initial condition for the

vortex core. A combination of the monte-carlo integration routine ‘Vegas’ [9] and the

double exponential routine of T. Ooura [35] was used. The double exponential routine

was used to speed convergence of the oscillatory Ic
1 integral for large ρ. This method of

numerical integration was first used to evaluate the energy spectrum and reasonable

agreement with Lundgren’s asymptotic result [29] was found. In the case of an initial

condition for the vortex core of a line vortex (2.108) the situation is simplified because

the Iω
0 integral can be performed explicitly. The resulting contribution to the one-

dimensional cospectrum for this initial condition is shown on a log-log scale in Figure

2.7. compared with the axial contribution.

Note that the planar contribution is not of one sign, unlike the experimental

result. This is typical of results obtained for other choices of the initial condition for



44

the vortex core. Also the upper cutoff in time has an effect on this contribution, and

if a cutoff is not used the core winds up more and more of the gradient so that the

integrals do not converge. The planar contribution for this initial condition has two

distinct ranges. The first range (for low wavenumber) is a k−1 range and is of one

sign. At higher wavenumber there is an oscillatory spectrum with a k−5/3 envelope.

However, both of these ranges are specific to this choice of Ω because the integral in

Iω
0 is not in general dominated by a point of stationary phase, and its form varies for

different Ω’s.

In section 2.5 we will compare the axial contribution to the cospectrum with

results from experiment, simulation, and the SDIP.

2.2.4 Comments on the stretched-spiral vortex model result

Here we will give some additional comments and physical interpretation of the stretched-

spiral vortex model result for the velocity-scalar cospectrum. We have shown that

the velocity-scalar cospectrum result is a sum of a component from the axial velocity,

and a component from the planar velocity. The solution to the advection-diffusion

equation given by expression (2.54) shows that the axially-varying scalar and the ax-

ial velocity evolve in a very similar way, as they are both wound into a spiral by the

axisymmetric vorticity, the main difference being caused by the effect of stretching.

As the spiral turns wind closer together over time, smaller and smaller structure is

created. However, for a given time and wavenumber the contribution to the cospec-

trum is dominated by the spiral structure at a certain radius. This dominance is

expressed in the stationary phase approximation used in subsection (2.2.2). Thus, in

the stretched-spiral vortex model, the eddies or small scale structure correspond to

the structure of the turns of the spiral.

In contrast, the contribution to the cospectrum from the planar velocity does not

have an asymptotic wavenumber dependence independent of initial conditions. The

reason for this is that while the axial velocity, the scalar, and the axial vorticity are

all wound into spirals of a similar form, a given component of the planar velocity has
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a different kind of evolution because of the pressure term in equation (2.38). Thus,

the physical mechanism of spiral winding does not apply, and a range of different

wavenumber behaviors are possible depending on initial conditions.

2.3 Sparse direct-interaction perturbation

Here we will apply the SDIP to mixing of a passive scalar in the presence of a mean

scalar gradient. In particular, we will use the SDIP to calculate the velocity-scalar

cospectrum for a range of Schmidt numbers. It is worth emphasizing that we will

consider a statistically isotropic velocity field, but a statistically non-isotropic scalar

field. Fortunately, we will be able to use incompressibility of the velocity field and

the statistical axisymmetry of the scalar field to describe the cospectrum using a

single isotropic function. The resulting SDIP equations are still considerably more

complicated than those derived for the scalar spectrum in the isotropic case [14].

Before going into the details of the SDIP calculation of the cospectrum, it will

be useful to give a brief critical assessment of the SDIP. The SDIP is based upon

three assumptions, as will be explained in subsection 2.3.3. The first two assump-

tions have been verified for simpler dynamical systems in Goto and Kida [13, 15].

The third assumption involves statistical independence of certain quantities, and is

unlikely to be a good approximation. The SDIP equations are identical to those of the

Lagrangian renormalized approximation [21], a theory that is based on the truncation

of a renormalized perturbation series. Neither derivation of the SDIP equations has

been rigorously justified, and the SDIP may not be a rational approximation to the

exact dynamics, see also the discussion by Saffman [44]. Nonetheless, the SDIP calcu-

lation of the turbulent energy spectrum [24] shows good agreement with experiment.

The SDIP calculation of the scalar spectrum [14] gives power-law scaling regimes in

agreement with phenomenology, but the Obukhov-Corrsin constant is significantly

different from experimental values. It is notable that the agreement achieved with

the scalar and energy spectra does not require adjustable parameters.

In subsection 2.3.1 we describe the basic formulation and equations. In subsections
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2.3.3 and 2.3.4 we derive an integral equation for the cospectrum using the SDIP. We

solve this equation in the inertial-convective range in subsection 2.3.5, and numerically

for the entire wavenumber range in subsection 2.3.6 for a range of Schmidt numbers.

Lastly, we find the asymptotic solution to the SDIP equation for the cospectrum in

the limit of low Schmidt number in subsection 2.3.7.

2.3.1 Basic formulation

The notation we will use is consistent with that of Goto and Kida [14]. A more

detailed account of some of the basic equations can be found in section II of that

paper, although it should be noted that they deal with a statistically isotropic scalar

field without a mean gradient. We again adopt the convention for denoting integrals,

where the associated infinitesimal is placed beside the integration sign, to improve

the clarity of some of our expressions. We are considering passive scalar mixing by

an incompressible, statistically homogeneous and isotropic velocity field, ui(x, t), and

where the scalar is assumed to have a mean scalar gradient, µ, in the 1 direction, so

that we can decompose the scalar as µx1 + c(x, t).

The velocity field evolves according to the Navier-Stokes equations,

∂

∂t
ui(x, t) + uj(x, t)

∂

∂xj

ui(x, t) = − ∂

∂xi

π(x, t) + ν
∂2

∂xj∂xj

ui(x, t), (2.120)

where π(x, t) is the pressure density ratio, and the continuity condition,

∂

∂xi

ui(x, t) = 0. (2.121)

The scalar fluctuation evolves according to the advection-diffusion equation given

by equation (2.25). It is convenient to make use of a Lagrangian position function,

φ(x, t|x′, t′), defined by

φ(x, t|x′, t′) = δ3(x − y(t|x′, t′)), (2.122)
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where a fluid element that is located at x′ at time t′, is located at y(t|x′, t′) at time

t ≥ t′. The Lagrangian position function evolves according to

∂

∂t
φ(x, t|x′, t′) + uj(x, t)

∂

∂xj

φ(x, t|x′, t′) = 0 (2.123)

with initial condition

φ(x, t|x′, t) = δ3(x − x′). (2.124)

We can then define Lagrangian velocity and scalar fields as

uL
i (t|x, t′) =

∫
d3x′ ui(x

′, t) φ(x′, t|x, t′), (2.125)

and

c(L)(t|x, t′) =

∫
d3x′ c(x′, t) φ(x′, t|x, t′). (2.126)

The velocity and scalar Lagrangian auto-correlation functions are

Vij(r, t, t
′) = uL

i (t|x + r, t′) uj(x, t′), (2.127)

and

Z(r, t, t′) = c(L)(t|x + r, t′) c(x, t′). (2.128)

We wish to calculate the velocity-scalar cospectrum, and so define Lagrangian cross-

correlation functions,

Wi(r, t, t
′) = c(L)(t|x + r, t′) ui(x, t′), (2.129)

and

Yi(r, t, t
′) = uL

i (t|x + r, t′) c(x, t′). (2.130)

Having defined the basic statistical quantities in physical space, we now move to

Fourier space. The SDIP is formulated by first assuming that the flow is in a periodic

box of side L. The velocity field ui(x, t) can then be decomposed as in equation (2.8),
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and the inverse Fourier transform is given by (2.9). Similar transforms are defined

for the other variables. The limit L → ∞ will be taken at a later stage.

We will now write the governing equations in Fourier space. The incompressibility

of the velocity field implies that ki ũi(k, t) = 0. The Navier-Stokes equations (2.120)

become

[
∂

∂t
+ ν k2

]
ũi(k, t) = − i

2

(
2π

L

)3

P̃ijm(k)
∑
p

∑
q

(k+p+q=0)

ũj(−p, t) ũm(−q, t), (2.131)

where P̃ijm(k) = km P̃ij(k) + kj P̃im(k), and the incompressible projection operator

is given by P̃ij(k) = δij − kikj/k
2. The scalar advection-diffusion equation (2.25) be-

comes equation (2.26) in Fourier space, but here we will use the equivalent symmetric

form,

[
∂

∂t
+ D k2

]
c̃(k, t) = −µ ũ1(k, t)− i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

ũj(−p, t) c̃(−q, t). (2.132)

The evolution equation for the Lagrangian position function (2.123) becomes

∂

∂t
φ̃(k, t|k′, t′) = −i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

ũj(−p, t) φ̃(−q, t|k′, t′) (2.133)

with initial condition

φ̃(k, t|k′, t′) =
L3

(2π)6
δ3
k+k′ , (2.134)

where δ3
k+k′ = 1 if k = −k′, and δ3

k+k′ = 0 otherwise. The Fourier transforms of the
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Lagrangian velocity and scalar fields evolve according to

∂

∂t
ṽi(t|k, t′) = −(2π)6

L3
ν

∑
p

p2 ũi(p, t) φ̃(−p, t|k, t′)

− i
(2π)9

L6

∑
p

∑
q

∑
r

(p+q+r=0)

ri rm rn

r2
ũm(p, t) ũn(q, t) φ̃(r, t|k, t′),

(2.135)

and

∂

∂t
c̃(L)(t|k, t′) = −µ ṽ1(t|k, t′) − (2π)6

L3
D

∑
p

p2 c̃(p, t) φ̃(−p, t|k, t′). (2.136)

This may be seen by taking a time derivative of the Fourier space counterparts of

(2.125) and (2.126),

ṽi(t|k, t′) =
(2π)6

L3

∑
k′

ũ(k′, t) φ̃(−k′, t|k, t′), (2.137)

and

c̃(L)(t|k, t′) =
(2π)6

L3

∑
k′

c̃(k′, t) φ̃(−k′, t|k, t′). (2.138)

The diffusive term in (2.136) is written incorrectly in the paper by Goto and Kida[14],

although this makes no difference after the SDIP approximations are made.

Turning now to the two-point statistics, we find

Ṽij(k, t, t′) =

(
2π

L

)3

ṽi(t|k, t′) ũj(−k, t′), (2.139)

Z̃(k, t, t′) =

(
2π

L

)3

c̃(L)(t|k, t′) c̃(−k, t′), (2.140)

W̃i(k, t, t′) =

(
2π

L

)3

c̃(L)(t|k, t′) ũi(−k, t′), (2.141)

Ỹi(k, t, t′) =

(
2π

L

)3

ṽi(t|k, t′) c̃(−k, t′). (2.142)
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We will later need evolution equations for W̃i(k, t, t′) and Ỹi(k, t, t′) when calcu-

lating the cospectrum. For one-time correlations we have that

[
∂

∂t
+ (ν + D) k2

]
W̃i(k, t, t) = −µ Ṽ1i(k, t, t)

− i kj

(
2π

L

)6 ∑
p

∑
q

(k+p+q=0)

ũj(−p, t) c̃(−q, t) ũi(−k, t)

+
i

2

(
2π

L

)6

P̃ijm(k)
∑
p

∑
q

(−k+p+q=0)

ũj(−p, t) ũm(−q, t) c̃(k, t),

(2.143)

and Ỹi(k, t, t) = W̃i(−k, t, t). For two-time correlations we have that

∂

∂t
W̃i(k, t, t′) = −µ Ṽ1i(k, t, t′) − D

(2π)9

L6

∑
p

p2 c̃(p, t) φ̃(−p, t|k, t′) ũi(−k, t′),

(2.144)

∂

∂t
Ỹi(k, t, t′) = −i

(2π)12

L9

∑
p

∑
q

∑
r

(p+q+r=0)

ri rm rn

r2
ũm(p, t) ũn(q, t) φ̃(r, t|k, t′) c̃(−k, t′)

− ν
(2π)9

L6

∑
p

p2 ũi(p, t) φ̃(−p, t|k, t′) c̃(−k, t′). (2.145)

It will be necessary to make use of linear response functions in the SDIP calcula-

tion. The Eulerian and Lagrangian scalar response functions are defined as

G̃(E)(k, t|k′, t′) =
δ c̃(k, t)

δ c̃(k′, t′)
, (2.146)

G̃(L)(t|k,k′, t′) =
δ c̃(L)(t|k, t′)

δ c̃(k′, t′)
, (2.147)
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with evolution equations

[
∂

∂t
+ D k2

]
G̃(E)(k, t|k′, t′) = −i kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

ũj(−p, t) G̃(E)(−q, t|k′, t′),

(2.148)
∂

∂t
G̃(L)(t|k,k′, t′) = −D

(2π)6

L3

∑
p

p2 G̃(E)(p, t|k′, t′) φ̃(−p, t|k, t′), (2.149)

and initial conditions

G̃(E)(k, t′|k′, t′) = G̃(L)(t′|k,k′, t′) =
L3

(2π)6
δ3
k+k′ . (2.150)

Here δ is a functional derivative, and our notation is consistent so that, for exam-

ple, δ c̃(k, t)/δ c̃(k′, t′) is a Fourier transform with respect to x, followed by a a Fourier

transform with respect to x′ of δ c(x, t)/δ c(x′, t′). Similarly, we define Eulerian and

Lagrangian velocity response functions as

G̃
(E)
ij (k, t|k′, t′) =

δ ũi(k, t)

δ ũj(k′, t′)
, (2.151)

G̃
(L)
ij (t|k,k′, t′) =

δ ṽi(t|k, t′)
δ ũj(k′, t′)

, (2.152)

with initial conditions

G̃
(E)
ij (k, t′|k′, t′) = G̃

(L)
ij (t′|k,k′, t′) =

L3

(2π)6
δij δ3

k+k′ . (2.153)

Details of the evolution equations for G̃
(E)
ij (k, t|k′, t′) and G̃

(L)
ij (t|k,k′, t′) may be found

in Kida and Goto[24].

It is often more convenient to work with incompressible projections of Ṽij(k, t, t′),

G̃
(L)
ij (t|k,k′, t′), and Ỹi(k, t, t′), and so we define

Q̃ij(k, t, t′) = P̃im(k) Ṽmj(k, t, t′), (2.154)

G̃ij(k, t, t′) =
(2π)6

L3
G̃

(L)
im (t|k,−k, t′) P̃mj(k), (2.155)
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X̃i(k, t, t′) = P̃im(k) Ỹm(k, t, t′). (2.156)

Finally, after taking the limit L → ∞ we can relate Ṽij(k, t, t) to the shell-summed

energy spectrum, E(k), Z̃(k, t, t) to the shell-summed scalar spectrum, Ec(k), and

W̃i(k, t, t) to the shell-summed velocity-scalar cospectrum, Cu1c(k), see equations

(2.16), (2.17), and (2.18), respectively. The shell-summed cospectrum can also be

related to Ỹ by noting that W̃1(k, t, t) = Ỹ1(k, t, t).

2.3.2 DIA decompositions

We will now use the SDIP to calculate the velocity-scalar cospectrum. It will be

convenient from now on in this section to generalize to the case of an arbitrary

mean scalar gradient µi. The basis of the approximation is the decomposition of

the field variables into the sum of non-direct-interaction (NDI) fields, denoted by

the superscript (0), and the deviation fields, denoted with the superscript (1). For

example, we decompose the scalar field as

c̃(k, t) = c̃(0)(k, t‖k0,p0,q0) + c̃(1)(k, t‖k0,p0,q0), (2.157)

where k0, p0, and q0 are a triad of wavevectors such that k0 + p0 + q0 = 0. The

initial conditions for this decomposition are given at time t0 as

c̃(0)(k, t0‖k0,p0,q0) = c̃(k, t0), c̃(1)(k, t0‖k0,p0,q0) = 0. (2.158)

The evolution of c̃(0) is governed by

[
∂

∂t
+ D k2

]
c̃(0)(k, t‖k0,p0,q0) = −µj ũj(k, t)

− i kj

(
2π

L

)3 ∑
p

∑
q

′

(k+p+q=0)

ũj(−p, t) c̃(0)(−q, t‖k0,p0,q0),
(2.159)
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where
∑ ∑ ′ denotes a summation that excludes interactions between the triad k0,

p0, and q0. Subtracting (2.159) from (2.132) we find

[
∂

∂t
+ D k2

]
c̃(1)(k, t‖k0,p0,q0) =

− i kj

(
2π

L

)3 ∑
p

∑
q

′

(k+p+q=0)

ũj(−p, t) c̃(1)(−q, t‖k0,p0,q0)

− i δ3
k−k0

k0j ũj(−p0, t) c̃(0)(−q0, t‖k0,p0,q0)

− i δ3
k−k0

k0j ũj(−q0, t) c̃(0)(−p0, t‖k0,p0,q0)

+ i δ3
k+k0

k0j ũj(p0, t) c̃(0)(q0, t‖k0,p0,q0)

+ i δ3
k+k0

k0j ũj(q0, t) c̃(0)(p0, t‖k0,p0,q0)

+ (k0 → p0 → q0 → k0).

(2.160)

Similar decompositions are made for the Eulerian velocity field, ũ(k, t), the position

function, φ̃(k, t|k′, t′), the Eulerian velocity response function G̃
(E)
ij (k, t|k′, t′), and the

Lagrangian velocity response function G̃
(L)
ij (t|k,k′, t′), see Kida and Goto [24]. We

also decompose the Eulerian scalar response function, G̃(E)(k, t|k′, t′), see Goto and

Kida [14]. The deviation fields can then be expressed in terms of the NDI fields and

the response functions. For example, the scalar deviation field is given by

c̃(1)(k, t‖k0,p0,q0) = −i kj
(2π)9

L6

∫ t

t0

dt′ G̃E(0)(k, t| − k, t′‖k0,p0,q0)

× [ δ3
k−k0

ũj(−p0, t
′) c̃(0)(−q0, t

′‖k0,p0,q0)

+ δ3
k−k0

ũj(−q0, t
′) c̃(0)(−p0, t

′‖k0,p0,q0)

+ δ3
k+k0

ũj(p0, t
′) c̃(0)(q0, t

′‖k0,p0,q0)

+ δ3
k+k0

ũj(q0, t
′) c̃(0)(p0, t

′‖k0,p0,q0)

+ (k0 → p0 → q0 → k0) ] . (2.161)
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2.3.3 Derivation of closed evolution equations

The main purpose of the SDIP is to express third-order correlations in terms of second-

order correlations so that closed evolution equations for second order quantities can

be derived. There are three main assumptions in the SDIP procedure:

i The magnitude of the deviation field is smaller than that of the NDI field for

times (t − t0) within the correlation timescale of the velocity field.

ii Any two Fourier modes of the NDI fields without direct interaction are statis-

tically independent of each other. For example, c̃(0)(k0, t‖k0,p0,q0),

c̃(0)(p0, t
′‖k0,p0,q0), and ũ

(0)
k (q0, t

′′‖k0,p0,q0) are statistically independent.

iii The NDI position function field, φ̃0, is statistically independent of the other

Eulerian quantities, such as ũ
(0)
i and c̃(0).

Additional statistical assumptions were needed in Kida and Goto [24] involving the

position response function, but this function is not used here. Assumptions (i) and

(ii) were tested for a model system in Goto and Kida [13, 15], but assumption (iii) is

difficult to justify.

SDIP approximations to (2.143) and (2.144) are derived in Appendix C using the

DIA decompositions and the above three assumptions. The results are

[
∂

∂t
+ (ν + D) k2

]
W̃i(k, t, t) =

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

∫ t

t0

dt′ Θ1(k,p,q, t, t′)

− µj Ṽji(k, t, t), (2.162)
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where

Θ1(k,p,q, t, t′) =

kj

(
Q̃ib(−k, t, t′) W̃c(−q, t, t′)

[
pc G̃jb(−p, t, t′) + pb G̃jc(−p, t, t′)

]
+ (i ↔ j,k ↔ p)

)
+ kj ql exp[−D q2 (t − t′)]

[
Q̃jl(−p, t, t′) X̃i(−k, t, t′) + Q̃il(−k, t, t′) X̃j(−p, t, t′)

]
+

1

2
P̃ijm(k)

(
Q̃mc(q, t, t′) W̃b(k, t, t′)

[
pc G̃jb(p, t, t′) + pb G̃jc(p, t, t′)

]
+ (j ↔ m,p ↔ q)

)
+

1

2
kl P̃ijm(k) exp[−D q2 (t − t′)]

[
Q̃jl(p, t, t′) X̃m(q, t, t′) + Q̃ml(q, t, t′) X̃j(p, t, t′)

]
,

(2.163)

and [
∂

∂t
+ D k2

]
W̃i(k, t, t′) = −µj Ṽji(k, t, t′). (2.164)

It is easier to work with X̃i(k, t, t′) rather than Ỹi(k, t, t′), and so the SDIP approx-

imation to the incompressible projection of equation (2.145) is derived in Appendix

D,

[
∂

∂t
+ ν k2

]
X̃i(k, t, t′)

= −2

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

P̃il(k)
ql qm qn qj

q2
X̃n(k, t, t′)

∫ t

t′
dt′′ Q̃mj(p, t, t′′).

(2.165)

Taking the L → ∞ limit, the system of integro-differential equations to be solved can

be summarized as

[
∂

∂t
+ (ν + D) k2

]
W̃i(k, t, t) =

∫
dp

∫
dq δ3

k+p+q

∫ t

t0

dt′ Θ1(k,p,q, t, t′)

− µj Ṽji(k, t, t), (2.166)
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∂

∂t
+ ν k2

]
X̃i(k, t, t′)

= −2 P̃il(k)

∫
dp

∫
dq δ3

k+p+q

ql qm qn qj

q2
X̃n(k, t, t′)

∫ t

t′
dt′′ Q̃mj(p, t, t′′),

(2.167)

together with equation (2.164) for W̃i(k, t, t′), and the initial condition

X̃i(k, t, t) = W̃i(−k, t, t). (2.168)

This is a closed system of equations for W̃i(k, t, t′) and X̃i(k, t, t′) once the velocity

field statistics Ṽij(k, t, t′), Q̃ij(k, t, t′), and G̃ij(k, t, t′) are specified.

2.3.4 Spatial symmetries and stationarity

We now use the spatial symmetries and stationarity of the problem to simplify our

equations. The velocity field is isotropic and stationary, and so we can write

Q̃ij(k, t, t′) =
1

2
P̃ij(k) Q†(k, t − t′), (2.169)

G̃ij(k, t, t′) = P̃ij(k) G†(k, t − t′). (2.170)

Note that although G̃ij(k, t, t′) does not satisfy ki G̃ij(k, t, t′) = 0 in the general case,

the incompressible property kj G̃ij(k, t, t′) = 0 is sufficient to give the form (2.170) in

the isotropic case. Similarly, the condition kj Ṽij(k, t, t′) = 0 together with isotropy

is sufficient to ensure that

Ṽij(k, t, t′) =
1

2
P̃ij(k)V †(k, t − t′). (2.171)

The definition of Q̃ij(k, t, t′) (2.154) then implies that V †(k, t) = Q†(k, t). We turn

now to statistical quantities involving the scalar. Axisymmetry and the condition

ki W̃i(k, t, t′) = 0 imply that

W̃i(k, t, t′) = f(k, t, t′, µ, kjµj)

(
µi − ki

ks µs

k2

)
. (2.172)
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The scalar, and therefore W̃i(k, t, t′), depend linearly on the mean scalar gradient µi

after initial fluctuations decay, and so we can write

W̃i(k, t, t′) = P̃ij(k) µj W †(k, t − t′). (2.173)

Using a similar argument for the form of X̃i(k, t, t′), we find

X̃i(k, t, t′) = P̃ij(k) µj X†(k, t − t′). (2.174)

Substituting (2.171) and (2.173) into (2.164) leads to

[
∂

∂t
+ D k2

]
W †(k, t) = −1

2
Q†(k, t), (2.175)

and this may be solved to give

W †(k, t) =

(
−1

2

∫ t

0

Q†(k, t′) exp[D k2 t′] dt′ + W †(k, 0)

)
exp[−D k2 t]. (2.176)

Making a comparison between the evolution equation for Q̃ij(k, t, t′) in Kida and

Goto [24], and the evolution equation (2.165) for X̃i(k, t, t′) here, it is easy to show

that X†(k, t) and Q†(k, t) have the same evolution equation. This can be written as

[
∂

∂t
+ ν k2 + η̂(k, t)

]
X†(k, t) = 0, (2.177)

where

η̂(k, t) =
4π

3
k5

∫ ∞

0

dp p10/3 s2(p
2/3)

∫ t

0

dt′ Q†(k p, t′), (2.178)

and

s2(p) =
3

32 p5

(
(1 − p3)4

2p3/2
log

[
1 + p3/2

|1 − p3/2|
]
− 1 + p3

3
(3p6 − 14p3 + 3)

)
. (2.179)

Therefore

X†(k, t) =
Q†(k, t)

Q†(k, 0)
W †(k, 0), (2.180)
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k

k

0

q

p

Figure 2.8: Integration region used in the SDIP integrals, denoted by 4k.

where we have used (2.168). Finally, we substitute into the integro-differential equa-

tion (2.166) for W̃i(k, t, t). Taking into account (2.176) and (2.180), and after con-

siderable algebra, we find

2 k2 (ν + D) W †(k, 0) + Q†(k, 0) =
1

2

∫ ∫
4k

dp dq
π p q

k

s1(k, p, q)

q2

∫ ∞

0

dt Θ2(k, p, q, t),

(2.181)

where

Θ2(k, p, q, t) = (k2 − q2)(k2 − p2 + q2) Q†(k, t) W †(q, t) Q†(p, t) Q†(p, 0)−1

+
(
(p2 − q2)2 − k2(p2 − 3q2)

)
Q†(p, t) W †(q, t) Q†(k, t) Q†(k, 0)−1

+ exp[−D q2 t] Q†(k, t) Q†(p, t) q2

× (−4 k2 W †(k, 0) Q†(k, 0)−1 + (k2 + p2 − q2) W †(p, 0) Q†(p, 0)−1
)

+
(
2p2 (q2 + k2 − p2) − 4 q2 k2

)
Q†(p, t) W †(k, t) Q†(q, t) Q†(q, 0)−1

+ exp[−D k2 t]
(
(p2 − q2)2 − k2(p2 − 3q2)

)
Q†(p, t) W †(q, 0) Q†(q, t) Q†(q, 0)−1,

(2.182)

and

s1(k, p, q) =
(k + p + q)(k + p − q)(k − p + q)(−k + p + q)

4 p2 k2
. (2.183)

The wavenumber integral is given by
∫ ∫

4k
=

∫ ∞
0

dp
∫ k+p

|k−p| dq, and the region of in-

tegration is illustrated in Figure 2.8. Note that we have let (t − t0) → ∞, and this
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is justified by the exponential decay of Q†(k, t) with respect to t. The linear inte-

gral equation (2.181) together with (2.176) is sufficient to determine W †(k, 0) when

Q†(k, t) has been specified.

2.3.5 Inertial-convective range

Here we will solve (2.181) and (2.176) for W †(k, 0) in the inertial-convective range,

that is in the wavenumber range where viscosity and diffusivity are unimportant. We

introduce a non-dimensional wavenumber κ = k/kK , and a non-dimensional time

τk = t ε1/3 k2/3, where kK = (ε/ν3)1/4 is the Kolmogorov wavenumber. It was shown

in Kida and Goto [24] that according to the SDIP, the velocity correlation function

Q†(k, t) can be written as

Q†(k, t) =
1

2π
K ε2/3 k−11/3 Q(κ, τk), (2.184)

where K = 1.722 is the Kolmogorov constant. In particular, in the inertial range we

have that

Q†(k, t) =
1

2π
K ε2/3 k−11/3 Q(0, τk). (2.185)

Assuming we are in the inertial-convective range means that we can effectively set

ν and D to zero in equations (2.176), (2.181), and (2.182). Thus, there are no

characteristic scales, and we can look for solutions of the form

W †(k, 0) = − 1

2π
ζ ε1/3 k−13/3, (2.186)

where ζ is a constant to be determined. Then, by (2.176),

W †(k, t) = W †(k, 0)

(
1 +

K

2 ζ
H(0, k2/3 ε1/3 t)

)
, (2.187)

where the more general function H(κ, τk) is defined by

H(κ, τk) = exp[−κ4/3 τk/Sc]

∫ τk

0

dτ ′
k Q(κ, τ ′

k) exp[κ4/3 τ ′
k/Sc]. (2.188)
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Note H(κ, τk) will be used in subsection 2.3.6 for non-zero κ.

Substituting (2.185), (2.187), and (2.186) into (2.181), the powers of k factor out,

and we find after some changes of integration variables that

ζ = − 1

b1

(1 + b2 K), (2.189)

where

b1 =
1

4

∫ ∫
41

dp dq
s1(1, p, q)

q2
p q

×
[
(1 − q2) (1 − p2 + q2) q−13/3 d1(p) + (1 + p2 − q2) q2 p−13/3 d1(p)

− 4 q2 p−11/3 d1(p) +
(
(p2 − q2)2 − (p2 − 3q2)

)
p−11/3 q−13/3 d1(p)

+
(
2p2(q2 + 1 − p2) − 4q2

)
p−13/3 f

(
q

p

)

+
(
(p2 − q2)2 − (p2 − 3q2)

)
p−13/3 q−13/3 f

(
q

p

) ]
, (2.190)

b2 =
1

8

∫ ∫
41

dp dq
s1(1, p, q)

q2
p q

×
[
(1 − q2) (1 − p2 + q2) q−13/3 d2(p, q)

+
(
(p2 − q2)2 − (p2 − 3q2)

)
p−11/3 q−13/3 d2(p, q)

+
(
2p2(q2 + 1 − p2) − 4q2

)
p−11/3 d3(p, q)

]
, (2.191)

and

d1(p) =

∫ ∞

0

dτk Q(0, τk) Q(0, p2/3 τk), (2.192)

d2(p, q) =

∫ ∞

0

dτk Q(0, τk) Q(0, p2/3 τk) H(0, q2/3 τk), (2.193)

d3(p, q) =

∫ ∞

0

dτk Q(0, p2/3 τk) Q(0, q2/3 τk) H(0, τk). (2.194)

Several of the terms in (2.191) and (2.191) contain non-integrable singularities, but

these can be shown to cancel each other to give finite values for b1 and b2. It

is such cancellations of singularities that allow Lagrangian reformulations of the
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DIA to give an energy spectrum with a k−5/3 wavenumber dependence in the in-

ertial range; see Leslie [27]. To evaluate the constant ζ we need to specify Q(0, τk).

Comparing with Kida and Goto [24] we find that their function Q̌†(τk) is given by

Q̌†(τk) = Q(0, K−1/2 τk), and we repeated their numerical calculation to determine

Q̌†(τk). Performing the integrals in (2.191) and (2.191) we found b1 = −0.44 and

b2 = 0.070, implying ζ = 2.6. The numerical integrations were carried out using

adaptive Gauss-Konrod integration routines from the GNU Scientific Library [10].

The shell-summed cospectrum can be evaluated using (2.18) and (2.173) to give

Cu1c(k) = −4

3
µ ζ ε1/3 k−7/3. (2.195)

Thus, the SDIP agrees with the Lumley [28] form for the cospectrum in the inertial-

convective range (1.2), and also gives the constant of proportionality.

2.3.6 Numerical solution of the SDIP equations

Here we will numerically solve (2.181) and (2.176) for W †(k, 0) with finite values of

the viscosity and diffusivity. To begin with we derive a convenient non-dimensional

form of the equations to be solved by defining the Schmidt number, Sc = ν/D, and

the non-dimensional function W (κ) by

W †(k, 0) = − 1

2π
ζ ε1/3 k−13/3 W (κ). (2.196)

The limit κ → 0 represents the inertial-convective range, and so from (2.186) we

expect W (0) = 1. Some further changes of integration variables result in the following

linear integral equation for W (κ)

N1(κ) W (κ) + N2(κ) +

∫ ∞

0

dq N3(κ, q) W (κ q) = 0, (2.197)
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where

N1(κ) = 2κ4/3

(
1 +

1

Sc

)
ζ

− K ζ

∫ ∞

0

dq

∫ 1+q

|1−q|
dp

∫ ∞

0

dτk
p

q
s1(1, p, q) p−11/3 Q(κ p, τk p2/3)

×
[
− exp[−κ4/3 q2 τk/Sc] q2 Q(κ, τk) Q(κ, 0)−1

+ exp[−κ4/3 τk/Sc]

(
1

2
p2(q2 + 1 − p2) − q2

)
Q(κ q, τk q2/3) Q(κ q, 0)−1

]
,

(2.198)

N2(κ) = −K Q(κ, 0) − 1

8
K2

∫ ∞

0

dq

∫ 1+q

|1−q|
dp

∫ ∞

0

dτk
p

q
s1(1, p, q) Q(κ p, τk p2/3)

×
[
(1 − q2)(1 − p2 + q2) Q(κ, τk) Q(κ p, 0)−1 H(κ q, τk q2/3) q−13/3

+ ((p2 − q2)2 − p2 + 3 q2) Q(κ, τk) Q(κ, 0)−1 H(κ q, τk q2/3) p−11/3 q−13/3

+ (2 p2(q2 + 1 − p2) − 4 q2) Q(κ q, τk q2/3) Q(κ q, 0)−1 H(κ, τk) p−11/3
]
,

(2.199)

N3(κ, q) = −1

4
ζ K q−13/3

∫ 1+q

|1−q|
dp

∫ ∞

0

dτk
p

q
s1(1, p, q)

×
[
(1 − q2)(1 − p2 + q2) Q(κ, τk) Q(κ p, τk p2/3) Q(κ p, 0)−1 exp[−κ4/3 q2 τk/Sc]

+ ((p2 − q2)2 − p2 + 3 q2) p−11/3 Q(κ p, τk p2/3)

×
(
Q(κ, τk) Q(κ, 0)−1 exp[−κ4/3 q2 τk/Sc]+

Q(κ q, τk q2/3) Q(κ q, 0)−1 exp[−κ4/3 τk/Sc]
)

+ p2(1 + q2 − p2) Q(κ, τk) Q(κ q, τk q2/3) Q(κ q, 0)−1 exp[−κ4/3 p2 τk/Sc]
]
.

(2.200)

Equation (2.197) is an inhomogeneous Fredholm integral equation of the second

kind. As written, the integrals giving N1(κ) W (κ) and
∫ ∞

0
dq N3(κ, q) W (κ q) do not

converge, because of a non-integrable singularity at (p → 0, q → 1). These singulari-

ties do cancel each other, but involve the unknown function W (κ) in a way that makes



63

adding and subtracting the singularity difficult. Therefore, the method of solution

chosen was to use a Newton-Raphson solver. This simplifies the problem because

calculation of the residuals requires finding the left hand side of the equation, but not

each individual term. Although the equation is linear, in practice two iterations were

required for good accuracy.

There is also an integrable singularity at (p → 1, q → 0) in the integral involving

N3(κ, q), and this was dealt with by transforming the q integration from the semi-

infinite interval to (−1, 1), and then using a Gauss-Jacobi rule with an appropriate

weighting function. The p and τk integrations were performed using adaptive Gauss-

Konrod integration routines from the GNU Scientific Library [10]. The Jacobian

needed for the Newton-Raphson solver was calculated using finite differences, and

interpolations were performed using cubic and bicubic spline interpolation for W (κ),

and Q(κ, τk), respectively.

The results were found to be converged when the integral equation was evaluated

at twenty points, and when for the q integration the integrand was evaluated at

twenty-four points. The integral equation was evaluated at the same points as where

W (κ) was stored, but these points were chosen to be different from the quadrature

points for the q integration. This was necessary because W enters the q integral as

W (κq), and so for small κ the q integration must extend to large values for accuracy.

A rescaling to a form with W (q) was not possible without the undesirable effect of

making the location of the singular points a function of κ.

Solving (2.197) obviously requires knowledge of the two-time, two-point velocity

statistics through the function Q(κ, τk). Initially, model functions were used, but in

order to have a more consistent calculation of the cospectrum all results presented here

use the SDIP prediction for Q(κ, τk). This was obtained by repeating the calculation

of Kida and Goto [24], involving the solution of a coupled system of a non-linear

integral equation, and a second order integro-differential equation. Our results for

Q(κ, 0) were found to match their reported results to within graphing accuracy.
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Figure 2.9: SDIP results for the compensated shell-summed velocity-scalar cospec-
trum at Schmidt numbers 1 (solid), 2 (dashed), 10 (dotted), and 100 (dash-dotted).
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Figure 2.10: SDIP results for the compensated shell-summed velocity-scalar cospec-
trum at Schmidt numbers 1 (solid), 10−1 (dashed), 10−2 (dash-dotted), 10−3 (dotted),
and 10−4 (dash-dot-dotted).
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The shell-summed cospectrum is related to W (κ) by

Cu1c(k) = −4

3
µ ζ ε1/3 k−7/3 W (κ), (2.201)

and so W (κ) represents a non-dimensional compensated cospectrum. Figure 2.9 shows

the results for the compensated shell-summed cospectrum for a range of Schmidt

numbers greater than one. As might be expected the cospectrum decays slower

for increasing Schmidt number, but nonetheless smoothly approaches the inertial-

convective limit in each case. Note we did not enforce the inertial-convective limit,

W (0) = 1, so that this condition is a check on the consistency of our results with

the inertial-convective calculation. There is a characteristic bump structure, which is

located at approximately 0.3 kK for Schmidt number unity. The cospectrum quickly

reaches an asymptotic form for large Schmidt number, and when graphed there was

no visible difference between the cospectra at Schmidt numbers one hundred, and one

thousand. As was discussed in section (2.1) there seems to be no power-law behav-

ior in the viscous-convective range. The compensated shell-summed cospectrum is

shown in Figure 2.10 for a range of small Schmidt numbers. Again there is a smooth

approach to the inertial-convective limit in each case. The asymptotic form for low

Schmidt number will be discussed in subsection 2.3.7, but we note in Figure 2.10 the

approach to a power law in the inertial-diffusive range. Comparison with experiment,

DNS, and the stretched-spiral vortex model will be made in section 2.5 at a Schmidt

number of order unity.

2.3.7 The SDIP equations at low Schmidt number

Here we will derive the asymptotic form of equation (2.197) for low Schmidt number.

We will then compare with the numerical solution of (2.197), and the non-SDIP

asymptotic result of section 2.1. To make the analysis more clear we follow the

method of Goto and Kida [14] by introducing the rescaled quantities κ = κs Scα,

W (κ) = Ws(κs) Scβ, where κs and Ws are assumed to be order unity as Sc → 0.

Here α and β are unrelated to the Euler angles of subsection 2.2.2. The Kolmogorov
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wavenumber and the Obukhov-Corrsin wavenumber then correspond to α = 0 and

α = 3/4, respectively. We wish to consider wavenumbers k À kC and so α < 3/4.

Typical exponential factors involving the Schmidt number are rewritten as

exp[−κ4/3 τk/Sc] = exp[−κ4/3
s τk Sc4α/3−1] ' 0, (2.202)

because 4α/3 − 1 < 0. Therefore in equation (2.197) we can neglect N3, and N1 is

approximated by

N1 ' 2 κ4/3
s Sc4α/3−1 ζ. (2.203)

Care must be taken with the function H(κ, τk), which is written using the rescaled

quantities as

H(κ, τk) =

∫ τk

0

dτ ′
k Q(κ, τ ′

k) exp[−κ4/3
s Sc4α/3−1 (τk − τ ′

k)]. (2.204)

Noting that τk ≥ τ ′
k we have that

N2 ' −K Q(κs Scα, 0). (2.205)

The relevant scaling for Ws(κs) is then β = −4α/3 + 1, with the result

Ws(κs) =
K Q(κs Scα, 0)

2 κ
4/3
s ζ

. (2.206)

In the inertial-diffusive range we have k ¿ kK , so that α > 0, and

Ws(κs) =
K

2 κ
4/3
s ζ

. (2.207)

Returning to unscaled variables we have that

W (κ) =
K Q(κ, 0) Sc

2 κ4/3 ζ
, k À kC , (2.208)

W (κ) =
K Sc

2 κ4/3 ζ
, kC ¿ k ¿ kK . (2.209)
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Figure 2.11: SDIP results for the compensated shell-summed velocity-scalar cospec-
trum at low Schmidt numbers (same key as Figure 2.10). Here the wavenumber
has been normalized with the Obukhov-Corrsin wavenumber, and the thick solid line
shows the inertial-diffusive asymptotic result given by equation (2.31).

The corresponding form for the shell-summed cospectrum is

Cu1c(k) = − 2 µ

3 D k2
E(k), k À kC , (2.210)

and for kC ¿ k ¿ kK we recover expression (2.31). Therefore the SDIP equation

is consistent with the asymptotic result of subsection 2.1.3 for the inertial-diffusive

range that was derived using the simpler Batchelor, Howells, and Townsend [2] type

analysis. The SDIP asymptotic form (2.210) is more general since it applies in the

viscous-diffusive range also.

In Figure 2.11 we compare the numerical solution to the SDIP equation at a

range of Sc ≤ 1 with the inertial-diffusive power law form (2.31). We have scaled

the wavenumber with the Obukhov-Corrsin wavenumber rather than the Kolmogorov

wavenumber, so that the normalized inertial-diffusive asymptotic result is Schmidt

number independent. The approach to the power law form is evident for the lower

Schmidt number cospectra. In Figure 2.12 we make a comparison at Sc = 10−4 of the
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Figure 2.12: SDIP result for the compensated shell-summed velocity-scalar cospec-
trum at Schmidt number 10−4 (solid) compared with the SDIP asymptotic form given
by equation (2.210) (dashed).

SDIP asymptotic form (2.210), and the SDIP numerical result. The agreement of the

numerical result with the SDIP asymptotic form is excellent in the viscous-diffusive

range.

Finally, to summarize our results for the effect of Schmidt number on the cospec-

trum, Figure 2.13 shows the shell-summed cospectrum in uncompensated form for

Schmidt numbers 10−4, 1, and 104, making clear the two distinct power law ranges

for small Schmidt number. At large Schmidt number the relatively small effect of

changes in Schmidt number is evident, at least when the wavenumber is scaled with

the Kolmogorov wavenumber, corresponding to varying the diffusivity with the vis-

cosity and energy dissipation held constant.

2.4 Direct numerical simulation

We performed a DNS with 5123 grid points on the QSC supercomputer to investigate

the small scale mixing of a passive scalar by a statistically isotropic turbulent velocity

field in the presence of a mean scalar gradient. In particular the velocity-scalar
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cospectrum, and the modal time correlations of the velocity and scalar fields were

calculated.

2.4.1 Description of the DNS

We solved the incompressible Navier-Stokes equations for the velocity field, and the

advection-diffusion equation for the scalar, using a Fourier-Galerkin pseudospectral

code in a cube of side 2 π with periodic boundary conditions. Although the scalar

has a mean gradient, the scalar fluctuation, c(x, t), is statistically homogeneous, and

so can be well represented using periodic functions. The velocity field is decomposed

as in equation (2.8), but where now L = 2π, and the sum over k is over a finite set

of modes, k = −nk/2, · · · , nk/2 − 1, corresponding to n3
k modes in total. A similar

decomposition is made for the scalar fluctuation. The velocity field was forced at

the large scales so that it became statistically stationary in time. The method used

was to force 20 Fourier modes, with wavevectors k such that 1 < |k| < 2, see Misra

and Pullin [32]. The forcing coefficients were chosen so that the energy injection rate∑
f̃i(k, t) ũi(−k, t) was constant, where f̂i(k, t) are the Fourier modes of the forcing

field. The mean gradient acted as a source for the variance of the scalar fluctuation,

and the scalar field also became statistically stationary in time. Integrating factors

were used for the viscous and diffusive terms, so that the governing equations for the

velocity and the scalar modes are given by

∂

∂t

(
exp[ν k2 t] ũi(k, t)

)
=

− exp[−ν k2 t]

(
P̃ij(k)

∑
k=p+q

i pk ũj(p, t) ũk(q, t) − f̃i(k, t)

)
,

∂

∂t

(
exp[D k2 t] c̃(k, t)

)
=

− exp[−D k2 t]

( ∑
k=p+q

i pk c̃(p, t) ũk(q, t) + µ ũ1(k, t)

)
,

(2.211)

where the incompressible projection operator is given by P̃ij(k) = δij − kikj/k
2, see

Mei-Jiau Huang [18]. A second-order explicit Runge-Kutta scheme was used for time-



71

Grid Rλ Tstat/Teddy Sc kmaxη Rl < c2 > /(µlε)
2 k0 l C

5123 265 10.5 0.7 1.05 1901 0.45 1.00 0.48

2563 167 9.3 0.7 1.00 779 0.38 0.99 0.51

Table 2.1: Simulation parameters for the stationary period of the DNS.

stepping, and a 3/2 dealiasing method was used for the non-linear terms.

Parameters describing the simulation are shown in Table 2.1. Values are also

reported for a smaller run with 256 grid points. Here Teddy is the eddy turnover time,

Tstat is the time over which the statistics are collected, Rλ is the Taylor Reynolds

number, kmax is the largest dynamically significant wavenumber, η is the Kolmogorov

length, Rl is the Reynolds number based on the integral length scale l, the turbulent

length scale is lε = u3
rms/ε where ε is the dissipation, k0 is the smallest wavenumber,

and C is the Courant number. The Courant number used was relatively low because

the time-step was fixed so that two-time statistics could be collected easily.

2.4.2 Results of the DNS

First we will show some instances of the scalar and vorticity fields in the DNS to

illustrate the structure of the flow. A two-dimensional 5122 cross-section of the total

scalar field is shown in Figure 2.14, where we have included the mean scalar gradient in

the horizontal direction. There appears to be many sharp interfaces in the scalar field,

and these are known as ramp-cliff structures because of their distinctive signature in

one dimension. See, for example, Warhaft [48] for a review of these structures and

how they relate to isotropy of the scalar field at the small scales. Figure 2.15(a)

shows an isosurface of vorticity magnitude corresponding to the intense vorticity

in a cube representing one sixty-fourth of the entire computational domain. The

intense vorticity is organized into tube-like structures that are sometimes referred

to as worms, see Jimenez et al. [19]. Such structures in the vorticity field are part

of the motivation for the stretched-spiral vortex model. Isosurfaces of the scalar

field are shown in Figure 2.15(b), and we can see that the field contains sheet-like

rather than tube-like structures. Brethouwer et al. [4] have studied the influence
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Figure 2.14: Cross-section of the total scalar field with 5122 gridpoints, including
the mean gradient in the horizontal direction. The scalar values are normalized as
(c + µx1)/(µ l).
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(a)

(b)

Figure 2.15: Isosurfaces of the vorticity magnitude and the scalar fluctuation. The
volume shown is 1/64 of the compuational domain. (a) Isosurface of the magnitude
of the vorticity, at a value three standard deviations above the mean value. (b)
Isosurfaces of the scalar fluctuation at c/(µ l) of −2.0 (yellow), 0.0 (green), 2.0 (blue).
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of Schmidt number on the morphology of the scalar field, albeit at relatively low

Reynolds number, and found that at low Schmidt number the scalar sheets were

wound into distinctive spiral structures.

We turn now to the time-averaged spectral characteristics of the flow. The shell

averaged energy spectrum in compensated form is shown in Figure 2.16(a) for both

the 2563 and 5123 runs. The beginning of the inertial range and the bump in the

dissipation range are apparent. The shell averaged scalar spectrum is shown in Figure

2.16(b). Again there is a bump at the beginning of the dissipation range, but the

slope at the beginning of the inertial convective range is considerably shallower than

minus five-thirds.

Also shown in Figure 2.16(b) is the scalar spectrum that results from the stretched-

spiral vortex model calculation of Pullin and Lundgren [40]. We plot the result given

by equations (107) and (108) of that paper, for a Schmidt number of 0.7. The vortex

Reynolds number was chosen to be 200 rather than 1000, so that it was at least

less than the Taylor Reynolds number of the DNS with which we wish to compare.

Note that at a Schmidt number of 0.7, the first order scalar dissipation, given by

equation (109) of that paper, could not be neglected. The result is a combination

of a k−1 term and a k−5/3 term, representing the first two terms in an asymptotic

series. The agreement with the DNS result is quite good, although the DNS scalar

spectrum is somewhat lower in the viscous diffusive range. A comparison, not shown

here, using a vortex Reynolds number of 1000 also gave reasonable agreement. Pullin

and Lundgren [40] made a comparison with experiment at Schmidt numbers 7 and

700, and it is interesting to see that the model seems to compare well at a Schmidt

number of 0.7 also.

The shell-summed velocity-scalar cospectra for the two simulations are shown in

Figure 2.17(a) compared with a k−7/3 power law. The slope is a little shallower than

a k−7/3 at the beginning of the inertial-convective range. In Figure 2.17(b) we show

the cospectrum for the larger simulation compared with the upper bound for the

magnitude of the cospectrum derived from inequality (2.21). As might be expected,

the bound is closest to the actual value for low wavenumbers.
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Figure 2.16: Spectra from the DNS at 5123 (full line) and 2563 (dashed line): (a)
energy spectra in compensated form, (b) scalar spectra compared with k−5/3, and the
stretched-spiral vortex result from reference [40] (dotted line).
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Figure 2.17: (a) Velocity-scalar cospectra from the DNS at 5123 (full line) and 2563

(dashed line) compared with a k−7/3 power law. (b) Velocity-scalar cospectrum from
the DNS at 5123 (full line) compared with the upper bound for the magnitude of the
cospectrum given by the cospectrum inequality (dashed line).
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Results from the DNS for the modal time correlations of the velocity and scalar

fields are discussed in section 3.3.

2.5 Comparison of results from theory, simulation,

and experiment

We make a comparison of the DNS results for the cospectrum with the stretched-

spiral vortex model result of section 2.2.3, the SDIP result of section 2.3.2, and

the experimental result of Mydlarski and Warhaft [34]. The Schmidt number is 0.7

for the DNS and the SDIP calculation. In the case of the stretched-spiral vortex

model the Schmidt number is restricted to be one, see section 2.2.1. For this model

we also only consider the component of the cospectrum due to axial motion in the

vortex structures, see section 2.2.3 for further details. The experimental result was

for the one-dimensional velocity-temperature cospectrum, C1D
u1c(k3), at Rλ of 582, and

a Schmidt number of 0.71. Note that in the experiment the direction of the scalar

gradient, and hence the scalar flux, was perpendicular to the direction in which the

cospectrum was measured. The experimental data was quite noisy, and so we have

applied a one-third octave smoothing filter. Mydlarski and Warhaft attributed the

noisiness of the cospectrum to the fact that no mathematical limitation keeps the

cospectrum either positive or negative. To make the comparison, we convert the

SDIP and stretched-spiral vortex model shell-summed cospectra to one-dimensional

cospectra using equation (2.117). The one-dimensional cospectrum was calculated

directly in the DNS.

The cospectra are shown in Figure (2.18) in compensated form, where we have also

shown a straight line representing the inertial-convective SDIP result. The shapes of

the cospectra are quite similar in all cases, although the SDIP cospectrum is closer

than the other cospectra to a k−7/3 power law in the inertial-convective range. The

DNS has a similar spectral slope to that of the experimental result which was re-

ported as k−2. The result from the stretched-spiral vortex model is quite low in
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Figure 2.18: Comparison of compensated one-dimensional velocity-scalar cospectra
from the stretched-spiral vortex model (dashed), experimental data from reference
[34] at Rλ = 582 (solid), DNS at Rλ = 265 (dash-dot-dot), SDIP inertial-convective
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magnitude relative to the other results, although we note that the exact magnitude

of the cospectrum result from this model is dependent on several rough estimates,

and only the contribution of the axial velocity is shown. The SDIP cospectrum seems

to be too large in magnitude in the inertial-convective range, and in this context it

is worth noting that the SDIP value for the Obukhov-Corrsin constant differs from

experimental values by a factor of about a half.
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Chapter 3 Modal Time Correlations

In this chapter we consider Eulerian two-point, two-time correlations of a turbulent

velocity field, and of a passive scalar mixed by a turbulent velocity field. Integral

expressions are derived for the modal time correlation functions of the velocity field,

and of the scalar field, using the stretched-spiral vortex model. These expressions

are evaluated using asymptotic methods for high wavenumber, and alternatively us-

ing numerical integration. If the motion of the centers of the vortex structures is

neglected, then an inertial time scaling (εk2)−1/3, where ε is the energy dissipation

rate, is found to collapse the velocity and scalar modal time correlation functions to

universal forms. Allowing the centers of the vortex structures to move introduces

a sweeping timescale, (urmsk)−1, where urms is the rms velocity of the centers of

the vortex structures. The sweeping timescale dominates the inertial timescale for

sufficiently large wavenumber. Results are also reported for the direct numerical sim-

ulation at a Taylor Reynolds number of 265. As was mentioned in Chapter 1, the

velocity modal time correlation function has previously been calculated using DNS

[16, 22, 36, 45], but here we have calculated both the velocity and scalar modal time

correlation functions. They coincide for large enough wavenumber, and are found to

collapse to universal forms when a sweeping timescale is used.

In section 3.1 we define the modal time correlation functions for the velocity

and the scalar, and briefly discuss some of their properties. Expressions for these

functions are derived using the stretched-spiral vortex model in subsection 3.2.1, and

these expressions are evaluated asymptotically in subsection 3.2.2, and numerically

in subsection 3.2.3. The effect of motion of the centers of the vortex structures is

considered in subsection 3.2.4. Finally, in section 3.3, the DNS results are reported,

and a comparison with the stretched-spiral vortex model is made.
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3.1 The modal time correlation function

We consider homogeneous turbulence, and begin by defining the two-time, two-point

velocity correlation at time t by

Rij(r, t, σ) = ui(x, t) uj(x + r, t + σ), (3.1)

where the overbar is taken to be an ensemble average. Then the shell-summed two-

time velocity cross-spectrum at time t is defined by

Fij(k, t, σ) =
1

(2π)3

∫
S

∫
V

Rij(r, t, σ)e−ik·rdr dSk, (3.2)

where the integral over V indicates a volume integral over all space, and the integral

over S indicates a surface integral over a spherical shell in wavenumber space. Note

that this shell average in wavenumber ensures that Fij(k, t, σ) is a real quantity. The

usual shell-summed energy spectrum is given by E(k, t) = 1/2Fjj(k, t, 0), where the

summation over j is implied. The modal time correlation function at time t, R(k, t, σ),

is then defined by, (see Comte-Bellot and Corrsin [6])

R(k, t, σ) =
Fjj(k, t, σ)

2 (E(k, t) E(k, t + σ))1/2
, (3.3)

so that R(k, t, 0) = 1. It is straightforward to show that

∂

∂ σ
R(k, t, σ)

∣∣∣∣
σ=0

= 0, (3.4)

even when the turbulence is non-stationary; see Appendix F. We will be concerned

with the case of stationary turbulence, so that we may omit references to t and define

R(k, σ) =
Fjj(k, σ)

2 E(k)
. (3.5)

Similarly for a passive scalar, c(x, t), we define the two-point, two-time scalar
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correlation function, Rc(r, σ),

Rc(r, σ) = c(x, t) c(x + r, t + σ), (3.6)

the shell-summed, two-time scalar cross-spectrum, Fc(k, σ),

Fc(k, σ) =
1

(2π)3

∫
S

∫
V

Rc(r, σ)e−ik·rdr dSk, (3.7)

and the scalar modal correlation function, Rc(k, σ),

Rc(k, σ) =
Fc(k, σ)

Ec(k)
, (3.8)

where Ec(k) = Fc(k, 0) is the scalar power spectrum. It is easily verified that the

property ∂
∂ σ

Rc(k, σ)
∣∣
σ=0

= 0 also holds.

A more intuitive understanding of the modal correlation functions follows from

considering turbulence in a cube of finite volume with periodic boundary conditions,

as is often considered in numerical simulation of homogeneous turbulence. Then the

velocity modal correlation function for a given discrete wavenumber represents the

autocorrelation in time of the Fourier mode of the velocity field for that wavenumber,

normalized by the variance of that Fourier mode. A similar interpretation follows in

the case of the scalar.

Investigators typically look for a characteristic timescale, τc(k), such as the sweep-

ing or inertial timescales introduced earlier, so that the velocity modal correlation

function has the similarity form,

R(k, σ) = g

(
σ

τc(k)

)
. (3.9)

We will also attempt to find such a scaling for the scalar modal time correlation

function, although in general we expect the timescale and similarity function may be

different from that found in the case of the velocity.
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3.2 Application of the stretched-spiral vortex model

3.2.1 Vortex structures with stationary centers

We wish to calculate the modal correlation functions using the stretched-spiral vortex

model. In order to do the simplest possible analysis (at least as a first step), we do

not explicitly consider the effects of a mean scalar gradient fixed in a lab frame, and

so c(x, t) now more properly refers to the total scalar field rather than a fluctuation

about a mean gradient. Also, we do not let the scalar vary in the direction of the

vortex axis, and we use the lowest-order solution for the scalar from expressions

(2.65). We will assume that the centers of the vortex structures are stationary; the

velocity and scalar modal correlation functions will be denoted Ř(k, σ) and Řc(k, σ),

respectively in this case. Gross motion of the vortex structures will be considered in

subsection 3.2.4.

As in subsection 2.2.1, the velocity field in a typical stretched vortex tube is

decomposed as

ui = vi(x1, x2, t) + ai(t)xi (3.10)

where summation over i is not implied, a1 = a2 = −a/2, a3 = a, a > 0, and the

strain-rate a is assumed constant. Note that we are now working with coordinates

centered in the vortex structure and with the x3 direction aligned with the vortex

axis. We make the simplifying assumption that the axial velocity v3(x1, x2, t) is zero.

The two-dimensional Fourier transform of the velocity and scalar fields, v̂j(k1, k2, t)

and ĉj(k1, k2, t), respectively, are defined by (2.74). Our starting point is equation

(B16) from Pullin and Saffman [41] for a general cross-spectrum, applied to Fjj(k, σ)

and Fc(k, σ), and modified to include a time average over the lifetime of the vortex

Fjj(k, σ) = 4 π2 N k

∫ ∞

0

∫ 2π

0

v̂j(k1, k2, t) v̂∗
j (k1, k2, t + σ) dθk S(t) dt, (3.11)

Fc(k, σ) = 4 π2 N k

∫ ∞

0

∫ 2π

0

ĉ(k1, k2, t) ĉ∗(k1, k2, t + σ) dθk S(t) dt, (3.12)

where k1 = k cos θk and k2 = k sin θk. Here, S(t) = exp(a t) is a stretching factor due



84

to the uniform strain rate a, and N is the rate of creation of vortex tube length per

unit time, and per unit volume. Note that the stretching factor is S(t) rather than

S(t+σ) because we take the length of the shorter tube when considering correlations

between two tubes of different lengths.

We must now decide on an appropriate expression for E(k) in the definition of

Ř(k, σ), equation (3.5). Guided by the definition of Ř(k, t, σ) in the case of non-

stationary turbulence, we take a geometric average of the energy spectra associated

with the velocity fields starting from t = 0 and t = σ,

E(k) =

(
2 π2 N k

∫ ∞

0

∫ 2π

0

v̂j(k1, k2, t) v̂∗
j (k1, k2, t) dθk S(t) dt

)1/2

×
(

2 π2 N k

∫ ∞

0

∫ 2π

0

v̂j(k1, k2, t + σ) v̂∗
j (k1, k2, t + σ) dθk S(t) dt

)1/2

.

(3.13)

Note that we choose S(t) rather than S(t + σ) in the second term in parenthesis so

that N is still the correct normalization factor. It is straightforward to check that

when expressions (3.11) and (3.13) are used in definition (3.5), then the property

(3.4) remains valid. Similarly we choose

Ec(k) =

(
4 π2 N k

∫ ∞

0

∫ 2π

0

ĉ(k1, k2, t) ĉ∗(k1, k2, t) dθk S(t) dt

)1/2

×
(

4 π2 N k

∫ ∞

0

∫ 2π

0

ĉ(k1, k2, t + σ) ĉ∗(k1, k2, t + σ) dθk S(t) dt

)1/2

.

(3.14)

If the velocity field of the vortex decays sufficiently fast far from the origin, we have

that v̂l(k1, k2, t) = i k−2 εlmn km ω̂n(k1, k2, t), where ωi(x1, x2, t) is the vorticity field,

and ω̂i(k1, k2, t) is its Fourier transform. Assuming that ω1 = ω2 = 0, and using

kl ω̂l = 0, it is then easy to show from equations (3.5) and (3.11) that

Ř(k, σ) E(k) =
1

k
2 π2 N

∫ ∞

0

∫ 2π

0

ω̂3(k1, k2, t) ω̂∗
3(k1, k2, t + σ) dθk S(t) dt, (3.15)
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where E(k) is given by

E(k) =

(
1

k
2 π2 N

∫ ∞

0

∫ 2π

0

ω̂3(k1, k2, t) ω̂∗
3(k1, k2, t) dθk S(t) dt

)1/2

×
(

1

k
2 π2 N

∫ ∞

0

∫ 2π

0

ω̂3(k1, k2, t + σ) ω̂∗
3(k1, k2, t + σ) dθk S(t) dt

)1/2

.

(3.16)

Decomposing ω3(r, θ, t) as in equation (2.81), gives that

Ř(k, σ) =

∑∞
n=−∞

∫ ∞
0

Iω
n (k, t) Iω∗

n (k, t + σ) S(t) dt

(
∑∞

n=−∞ Aω
n(k, σ))1/2 (

∑∞
n=−∞ Aω

n(k, 0))1/2
, (3.17)

where

Aω
n(k, σ) =

∫ ∞

0

|Iω
n (k, t + σ)|2 S(t) dt, (3.18)

and Iω
n (k, t) is given by (2.84). This can be simplified by using Iω

−n = Iω∗
n (−1)n to

give that Iω
−n(k, t) Iω∗

−n(k, t+σ) = Iω∗
n (k, t) Iω

n (k, t+σ). Omitting the zeroth harmonic

contribution we have that

Ř(k, σ) =

∑∞
n=1

∫ ∞
0

Re(Iω
n (k, t) Iω∗

n (k, t + σ)) S(t) dt

(
∑∞

n=1 Aω
n(k, σ))1/2 (

∑∞
n=1 Aω

n(k, 0))1/2
. (3.19)

Similarly for the passive scalar,

Řc(k, σ) =

∑∞
n=1

∫ ∞
0

Re(Ic
n(k, t) Ic

n
∗(k, t + σ)) S(t) dt

(
∑∞

n=1 Ac
n(k, σ))1/2 (

∑∞
n=1 Ac

n(k, 0))1/2
, (3.20)

where c(r, θ, t) =
∑∞

n=−∞ Cn(r, t) exp(i n θ), and Ac
n and Ic

n are defined by replacing

ωn with Cn in equation (2.84), and Iω
n with Ic

n in equation (3.18).

It remains to specify ωn(r, t) and Cn(r, t). A more detailed analysis of the asymp-

totic solutions we will use is given in section 2.2.1, but we will summarize the results

needed here. Following Lundgren [29], we introduce stretched coordinates ρ and τ

given by

ρ = S(t)1/2 r, τ =
1

a
(S(t) − 1). (3.21)
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We also define Ω(ρ) as the azimuthally averaged angular velocity, related to ω0 by

ω0 =
1

r

∂(r2 Ω)

∂ r
, (3.22)

and set Λ(ρ) = dΩ(ρ)/dρ. Then the following approximate solution to the Navier-

Stokes equations is asymptotically accurate for large time,

ωn(r, t) = S(t) fn(ρ) exp(−i n Ω(ρ) τ − ν n2 Λ(ρ)2 τ 3/3), n ≥ 1. (3.23)

Here ν is the viscosity, and the arbitrary functions fn(ρ) specify the initial condition

of the vorticity.

The scalar differs from the vorticity in that it is not amplified by stretching, and

it can be shown that [40]

Cn(r, t) = gn(ρ) exp(−i n Ω(ρ) τ − D n2 Λ(ρ)2 τ 3/3), n ≥ 1. (3.24)

is a solution to the scalar advection diffusion equation, asymptotically accurate for

large time, where D is the diffusivity and gn(ρ) are arbitrary functions specifying the

initial condition for the scalar. Comparing with expressions (2.65), we see that (3.24)

is the lower order part of the asymptotic solution for the scalar.

3.2.2 Asymptotic evaluation

We will now use an asymptotic analysis to evaluate the expressions (3.19) and (3.20)

for Ř(k, σ) and Řc(k, σ), respectively. First we concentrate on Ř(k, σ), and use the

method of stationary phase to evaluate Iω
n (k, t) for large wavenumber and large time
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[29],

Iω
n (k, t) =

∫ ∞

0

Jn

(
k ρ

(1 + a τ)1/2

)
fn(ρ) exp(−i n Ω(ρ) τ − ν n2 Λ(ρ)2 τ 3 /3) ρ dρ

' (1 + a τ)1/4 k−1/2 ρ1/2
s fn(ρs) (n ∆(ρs) τ)−1/2 in+1/2 ×

exp(i(−k ρs (1 + a τ)−1/2 − n Ω(ρs) τ − π/4) − n2 τ 3 ν Λ2(ρs)/3),

(3.25)

where we have assumed Λ(ρ) is monotonic, ∆(ρ) = dΛ(ρ)/dρ, and the point of sta-

tionary phase ρs is given by k +n Λ(ρs) τ (1+aτ)1/2 = 0. Further assuming that only

large (a τ) will be important gives

k n−1 Λ(ρs)
−1 a−1/2τ−3/2 = 1 + O

(
1

aτ

)
. (3.26)

The integral Iω
n (k, t + σ) is approximated by the right hand side of equation (3.25)

evaluated at t + σ, so that τ is replaced by

τ ′ =
1

a
(eaσ (a τ + 1) − 1), (3.27)

and ρs is replaced by ρ′
s where k+n Λ(ρ′

s) τ ′ (1+aτ ′)1/2 = 0. Noting that Λ2(ρ′
s) τ ′3 '

Λ2(ρs) τ 3 for a given n and k implies that the viscous parts of Iω
n (k, t) and Iω

n (k, t+σ)

are similar for large (aτ).

We now restrict the range of delay times σ that we are concerned with so that

we can relate Iω
n (k, t + σ) to Iω

n (k, σ). Let r0 be the characteristic length scale for

Ω(ρ), and assume for simplicity that this is the same for fn(ρ). We then restrict

attention to the range (k r0)
2/3 (a σ)2 ¿ 1 and (k r0) À 1, so that (aσ) ¿ 1. However

(kr0)
2/3(aσ) is assumed to be order one or greater. Then to leading order ρ′

s ' ρs,

fn(ρ′
s) ' fn(ρs), τ ′

s ' τs, and ∆(ρ′
s) ' ∆(ρs), where higher order terms are a factor

(aσ) smaller in magnitude. However care must be taken with the argument of the

complex exponential in equation (3.25), wn(ρ) = −k ρs (a τ)−1/2−n Ω(ρs) τ . When we

substitute our asymptotic expressions for Iω
n (k, t) and Iω

n (k, t+σ) in the numerator of
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equation (3.19) for Ř(k, σ), (wn(ρ′
s)−wn(ρs)) cannot be neglected. Making a change

of integration variables from t to ρs in equation (3.19), we find that

Ř(k, σ) '
∑∞

n=1 n−4/3
∫ ∞

0
Λ(ρs)

−4/3 |fn(ρs)|2 ρs cos(wn(ρ′
s) − wn(ρs))dρs∑∞

n=1 n−4/3
∫ ∞

0
Λ(ρs)−4/3 |fn(ρs)|2 ρs dρs

. (3.28)

The viscous parts of Iω
n (k, t + σ) and Iω

n (k, t) are identical and independent of t to

within the current approximation, and so factor out.

It remains to find wn(ρ′
s) − wn(ρs) to leading order; see Appendix G. The result

is

wn(ρ′
s) − wn(ρs) = k2/3 σ n1/3 a2/3 e(ρs) + O((k r0)

2/3 (a σ)2) + O(aσ), (3.29)

where

e(ρs) =

( |Λ(ρs)|1/3ρs

2
− Ω(ρ)

|Λ(ρs)|2/3

)
. (3.30)

Substituting into equation (3.28) we find

Ř(k, σ) '
∑∞

n=1 n−4/3
∫ ∞
0

|Λ(ρs)|−4/3 |fn(ρs)|2 ρs cos(k2/3 σ n1/3 a2/3 e(ρs)) dρs∑∞
n=1 n−4/3

∫ ∞
0

|Λ(ρs)|−4/3 |fn(ρs)|2 ρs dρs

,

(3.31)

and so to leading order Ř(k, σ) only depends on k and σ in the combination k2/3 σ,

in a similar way to the inertial time scaling.

The analysis for the scalar goes through in a similar way. Comparing the expres-

sions for the vorticity (3.23) and the scalar (3.24), we see that the scalar is similar

to the vorticity except for the stretching factor S(t). This leads to an extra factor

(aτ)−1 ' k−2/3 n2/3 |Λ(ρs)|2/3 a−2/3 in the approximation for Ic
n(k, t), and we find that

Řc(k, σ) '
∑∞

n=1

∫ ∞
0

|gn(ρs)|2 ρs cos(k2/3 σ n1/3 a2/3 e(ρs)) dρs∑∞
n=1

∫ ∞
0

|gn(ρs)|2 ρs dρs

. (3.32)

It is interesting to note that there is no dependence on the diffusivity in expression

(3.32).

If we further assume that a ' (ε/(15ν))1/2, and let Γ and r0 be the characteristic
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circulation and length scales of the vortex core, respectively, then the dependence on

k in expressions (3.31) and (3.32) is of the form

k2/3 σ ε1/3

(
Γ

ν

)1/3

. (3.33)

Thus the winding of the vorticity and the scalar has lead to an inertial timescale

k−2/3 ε−1/3, although there is also a dependence on the vortex Reynolds number Γ/ν.

The viscosity enters expressions (3.31) and (3.32) only through our assumption about

the strain-rate a, and as we mentioned before, there is no dependence on the scalar

diffusivity in expression (3.32). Note that the preceding analysis is valid for large

wavenumber, in the dissipation range as well as the inertial range.

3.2.3 Numerical evaluation

Expressions (3.19) and (3.20) were evaluated numerically for Ř(k, σ) and Řc(k, σ)

using an implementation of adaptive Gauss-Konrod integration in the GNU Scientific

Library [10]. This will be more accurate than the asymptotic approach of section

(3.2.2), but specific choices have to be made, for example, the precise form of Ω(ρ)

must be specified. We first define the non-dimensional parameters (indicated with

an overbar), r = r̄ r0, σ = σ̄/a, ωn = ω̄n(r̄) Γ/r2
0, Cn = C̄n(r̄) cc, Ω = Ω̄(r̄) Γ/r2

0,

and k = k̄/r0. Here r0 is the characteristic length scale, Γ is the characteristic

circulation of the vortex, and cc is a characteristic value of the scalar. We also define

the Kolmogorov length scale η = (ν3

ε
)1/4 and estimate the strain rate as a = ( ε

15 ν
)1/2,

where ε is the energy dissipation. The Schmidt number was set to unity, and the

following choices were made for the two remaining non-dimensional numbers

Γ

ν
= 107,

r0

η
= 151/4

(
Γ

ν

)1/2

. (3.34)

These values were chosen because they were found numerically to give a clear inertial

range for the energy spectrum obtained from expression (3.13). The value for Γ/ν is

much higher than is used in section 3.3.1, where the aim is to compare with simulation,
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and in sections 2.2.3 and 2.5 where the primary aim is to compare with experiment.

The initial conditions for the non-axisymmetric part of the vorticity and the scalar

were chosen to be

C̄1(r̄, 0) = ω̄1(r̄, 0) = A exp(−r̄2),

C̄n(r̄, 0) = ω̄n(r̄, 0) = 0, |n| > 1, (3.35)

where Ř(k, σ) and Řc(k, σ) are independent of the non-dimensional constant A. The

azimuthally averaged angular velocity was chosen to be Ω̄(r̄) = r̄−1/2 exp(−r̄2), en-

suring that Λ̄(r̄) is monotonic (see later in this section). The viscous diffusion of the

vortex core was neglected.

The resulting graphs for Ř(k, σ) and Řc(k, σ) are shown in Figures 3.1(a) and

3.1(b) at k̄ = 200, and Figures 3.2(a) and 3.2(b) at k̄ = 3000, compared with their

asymptotic expressions (3.31) and (3.32).

Numerical evaluation of expression (3.13) for E(k) (setting σ = 0) indicates that

k̄ = 200 is representative of the inertial range, and that k̄ = 3000 is representative of

the dissipation range, see Figure 3.3. The agreement between the asymptotics and

the numerical results is reasonable for k̄2/3σ̄2 small enough, with better agreement

for the higher value of k̄. However the main success of the asymptotic analysis is in

capturing the (k̄2/3 σ̄) dependence.

Similar results were found for other choices of Ω̄(r̄), ω̄n(r̄, 0) and c̄n(r̄, 0), as long

as Λ̄(r̄) was monotonic. If Λ̄(r̄) is not monotonic, for example, in the case of a

Gaussian angular velocity Ω̄(r̄) = exp(−r̄2), then there will be more than one point

of stationary phase in the asymptotic analysis, and our results (3.31) and (3.32) are

no longer valid. Numerically we find that for a Gaussian Ω̄(r̄), the dependence on k

and σ if of the form (k̄5/6 σ̄). Finally, it is noted that Ř(k, σ) and Řc(k, σ), calculated

using the stretched-spiral vortex model, do not necessarily remain positive, unlike

results from direct numerical simulation and experiment.
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Figure 3.1: (a) Ř(k, σ) and (b) Řc(k, σ) for k̄ = 200 from the stretched-spiral vor-
tex model with stationary vortex structure centers; numerical evaluation (full line),
asymptotic evaluation (dashed line).
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Figure 3.2: (a) Ř(k, σ) and (b) Řc(k, σ) for k̄ = 3000 from the stretched-spiral vor-
tex model with stationary vortex structure centers; numerical evaluation (full line),
asymptotic evaluation (dashed line).
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Figure 3.3: Energy spectrum from the non-axisymmetric vorticity for the stretched-
spiral vortex model.

3.2.4 Vortex structures with moving centers

We are considering two-time statistics and the preceding analysis is valid only if the

centers of the vortex structures remain stationary. We will now generalize to the case

where the vortex structures are allowed to move with a constant velocity relative to the

frame in which measurements are made. Each structure in the ensemble has its own

velocity, U, with the probability distribution for this velocity assumed isotropic and

independent of all other parameters (e.g., vortex orientation). We denote the velocity

in a frame moving with the vortex structure by ǔ(x̌), where x̌ are structure fixed

coordinates. The velocity in the vortex structure is given by u(x, t) = ǔ(x+U t, t)+U.

The numerator in the definition of R(k, σ), equation (3.5), is then given by

1

(2π)3

∫
S

∫
V

(∫
〈ǔi(x − Ut, t) ǔi(x − U(t + σ) + r, t + σ)〉p(U) dU

)
e−ik·rdr dSk

(3.36)

where 〈·〉 represents the averages over time, space and vortex orientation in the

stretched-spiral vortex model. The
∫

p(U) dU integral implements an average over

the gross velocities of the structures in the ensemble. The denominator in equation
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(3.5) involves single time statistics that are not influenced by U. Making the change

of integration variables ř = r − Uσ and x̌ = x − U t, we find that

R(k, σ) =

(∫
p(U) e−ik·UσdU

)
Ř(k, σ), (3.37)

where Ř is the modal correlation function for vortex structures with stationary cen-

ters. We have used the fact that the r integration is over an infinite volume, while the

x integral (representing a spatial average) is over an infinite interval in two directions

perpendicular to the vortex axis, and the integrand is independent of the coordinate

parallel to the vortex axis. The distribution of U is isotropic, so that we can write

p(U) = P ( |U|
ugross

) for a non-dimensional function P and a characteristic velocity ugross,

and so R(k, σ) = f(k ugross σ) Ř(k, σ), for some function f . Thus, unsurprisingly, the

constant motion of the structures has introduced a sweeping timescale (k ugross)
−1.

For example, if p(U) = (2πu2
rms)

−3/2 exp(−|U|2/(2 u2
rms)) where urms is the rms

turbulent velocity, then

R(k, σ) = exp(−k2 u2
rms σ2/2) Ř(k, σ). (3.38)

Note that the factor exp(−k2 u2
rms σ2/2) is the same as Kraichnan’s linearized estimate

for R(k, σ) [25]. The analysis for the scalar modal correlation function is identical,

and so

Rc(k, σ) = exp(−k2 u2
rms σ2/2) Řc(k, σ), (3.39)

where Řc is the scalar modal correlation function for vortex structures with stationary

centers.

3.3 Direct numerical simulation

The modal time correlation functions for both velocity and scalar fields were calcu-

lated in a DNS at Rλ of 265. A basic description of the DNS is given in section 2.4.1

The modal time correlation functions were calculated for a set of nshell wavenumbers
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{ki}, and ndelay time delays {σi}. They were calculated at several times {Ti}, and

an average was then taken for the final results. The intervals between the Ti’s were

greater than the maximum σi. For a given Tj, the velocity and scalar fields were

needed at the ndelay times t = Tj − σi. To minimize storage requirements the veloc-

ity and scalar fields were stored only in the wavenumber shells {ki} at these times.

The {σi} were chosen to be multiples of the simulation timestep. The above method

requires the timestep to be fixed throughout the stationary period of the simulation,

and so the Courant number must be chosen to be lower than for a simulation with a

variable timestep.

Results from the 5123 simulation for the modal correlation function of the velocity

are shown in Figure 3.4(a), and for the scalar in Figure 3.4(b). These are replotted

using the sweeping time-scaling in Figures 3.5(a) and 3.5(b), and inertial time-scaling

in Figures 3.6(a) and 3.6(b). The best collapse is for the sweeping timescale for both

the velocity and the scalar. The collapse occurs for wavenumbers in the inertial-

convective and dissipation ranges.

In Figure 3.7 we compare the modal time correlation functions for the velocity and

the scalar. We see that, for sufficiently large wavenumber, the modal time correlation

functions coincide. This is consistent with the picture of the primary decorrelation

mechanism for the small scale structures (in both the velocity and the scalar) being

convection by the large scale motions.

3.3.1 Comparison of DNS and the stretched-spiral vortex

model

To compare with the predictions of the stretched-spiral vortex model for the modal

time correlation functions, we needed to choose some parameters to characterize the

vortex structures in the model. We used urms, ε and ν from the DNS with a = ( ε
15 ν

)1/2,

and let the characteristic length scale of the vortex structures, r0, be the Taylor length

scale. We set the vortex Reynolds number Γ/ν to 200, noting that it should at least

be below the Taylor Reynolds number of 265. The initial vorticity and scalar profiles
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Figure 3.4: DNS results for the modal correlation function of (a) the velocity, and
(b) the scalar: ¤ kη = 0.0087, 4 kη = 0.0137, O kη = 0.0216, ♦ kη = 0.0341, ◦
kη = 0.0538, ¥ kη = 0.0848, N kη = 0.134, H kη = 0.211, ¨ kη = 0.332, • kη = 0.524.
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Figure 3.5: DNS results for the modal correlation function of (a) the velocity, and (b)
the scalar using the sweeping time scaling. See Figure 6 for the key to the symbols
used.
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Figure 3.6: DNS results for the modal correlation function of (a) the velocity, and
(b) the scalar using the inertial time scaling. See Figure 6 for the key to the symbols
used.
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Figure 3.7: Comparison of DNS results for the modal time correlation function of
the velocity (full line) and the scalar (dashed line) using the same wavenumbers as in
Figure 6.

were the same as used in section (3.2.3). The results for the stretched-spiral vortex

model were calculated using numerical evaluation of (3.19) and (3.20) for Ř(k, σ) and

Řc(k, σ) in expressions (3.38) and (3.39), respectively.

In Figures 3.8 and 3.9 the DNS and stretched-spiral vortex model results are com-

pared for representative wavenumbers kη = 0.0848 and kη = 0.211. These wavenum-

bers correspond to kr0 = 2.72 and kr0 = 6.76, respectively. We do not consider

smaller values of kr0 because the stretched-spiral vortex model is only considered

appropriate for the fine scales within the vortex structures. Also shown are the con-

vective part, exp(−k2 u2
rms σ2/2), and the winding parts Ř(k, σ) and Řc(k, σ), that

make up the stretched-spiral vortex model results. Clearly for these wavenumbers the

convective part is dominant. It is important to note that for other Reynolds numbers,

and other values of the parameters (e.g., the vortex length scale r0) the spiral winding

may be more significant.
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Figure 3.8: R(k, σ) at (a) kη = 0.0848, and (b) kη = 0.211: DNS results •, stretched-
spiral vortex model (full line). Also shown are exp(−k2 u2

rms σ2/2) (dash-dotted line),
and Ř(k, σ) (dashed line).
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Figure 3.9: Rc(k, σ) at (a) kη = 0.0848, and (b) kη = 0.211: DNS results •, stretched-
spiral vortex model (full line). Also shown are exp(−k2 u2

rms σ2/2) (dash-dotted line),
and Řc

stat(k, σ) (dashed line).
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Chapter 4 Conclusions and Future Work

The problem of passive-scalar mixing with a mean scalar gradient has been studied,

with particular attention being paid to the distribution of the scalar flux across scales,

and the characteristic timescales of the Fourier modes of the velocity and scalar fields.

Several properties of the velocity-scalar cospectrum were examined in this study.

In the inertial-convective range the SDIP result for the cospectrum was shown to

agree with the Lumley µ ε1/3 k−7/3 scaling [28]. The result for the cospectrum from

the stretched-spiral vortex model could be split into two additive components. An

asymptotic form was found for the component contributed by the axial velocity field,

with a k−5/3 wavenumber dependence at leading order. The next-order term had a

k−7/3 range, and the sign of its coefficient depended on the initial conditions. The

component of the cospectrum contributed by the velocity field in the plane of the

vortex was also calculated, but its form was found to depend on the choice of vortex

core. A new feature of the analysis was the use of a solution for the scalar in the

stretched vortex, where the scalar could vary in the axial direction. This allowed

the contribution of the axial velocity to the cospectrum be taken in to account, but

restricted the calculation to Schmidt number unity. Results for the cospectrum from a

direct numerical simulation at Schmidt number 0.7 were also presented. A comparison

was made of the experimental data of Mydlarski and Warhaft [34] with the results

from the SDIP, the stretched-spiral vortex model, and the DNS. The cospectral slopes

at the beginning of the inertial-convective range were all found to be shallower than

k−7/3, where Mydlarski and Warhaft had found k−2 at their largest Rλ. The decay

of the cospectrum with wavenumber in the inertial-convective range was found to be

faster than that of the scalar or the energy spectra, and this is consistent with the

idea of an approach to isotropy at small scales.

The effect on the cospectrum of different Schmidt numbers was also investigated.

An upper bound was derived for the magnitude of the cospectrum in terms of the shell-
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summed energy and scalar spectra, with the implication that at high Schmidt number

the cospectrum would decay exponentially with wavenumber in the viscous-convective

range. This limits the possible contribution of sub-Kolmogorov lengthscales to the

mean scalar flux, a result that may be important in subgrid modeling of the scalar

flux. At low Schmidt number the argument of Batchelor, Howells, and Townsend

[2] for the form of the scalar spectrum in the inertial-diffusive range was modified

to include the effect of the mean scalar gradient. Using a similar argument, a new

asymptotic form was found for the velocity-scalar cospectrum, with a k−11/3 power

law wavenumber dependence in the inertial-diffusive range. The inertial-diffusive re-

sults for the cospectrum and the scalar spectrum were confirmed using LES with

no subgrid model for the scalar field, and are in principle subject to experimental

verification, perhaps using a liquid metal. It is interesting to note that at least in

this regime, the forcing of the scalar fluctuation by the mean scalar gradient is im-

portant at small wavenumber for both the scalar spectrum and the velocity-scalar

cospectrum. Although the derivation of the SDIP equation for the cospectrum was

rather complicated, one advantage is that it was then relatively inexpensive to inves-

tigate a wide range of Schmidt numbers. Using the SDIP equation, the asymptotic

form of the cospectrum in the inertial-diffusive range was confirmed and extended to

the viscous-diffusive range. At high Schmidt number the SDIP result for the cospec-

trum was indeed found to decay exponentially in the viscous-convective range, as was

expected from the cospectrum inequality.

Moving now to the study of two-time statistics, the stretched-spiral vortex model

has been shown to predict two characteristic timescales for the velocity and scalar

modal time correlation functions. An inertial timescale arises from the winding of

the vorticity and the scalar by the vortex cores, and a sweeping timescale arises from

the movement of the centers of the vortex structures. Thus the model provides an

integrated treatment of both these decorrelation mechanisms. Many studies have

been performed on the modal time correlation function of the velocity field, but here

we have also considered the modal time correlation function of a passive scalar. The

stretched-spiral vortex model predicts a similar form for both functions, and this
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is borne out by the results from the DNS. The DNS results for both the velocity

and scalar modal time correlation functions were well collapsed using the sweeping

timescale.

It is perhaps appropriate at this point to make a brief comparison of the two

theories of turbulence used here, namely, the SDIP and the stretched-spiral vortex

model. The stretched-spiral vortex model is a structure-based model, where turbu-

lence is modeled as an ensemble of vortex structures, and then statistics such as

spectra [29, 40], structure functions [43], or modal time correlations may be calcu-

lated numerically, and sometimes asymptotically. One disadvantage is that there are

many unknown parameters such as the background strain rate, or the orientation

probability density function of the vortex structures. In contrast, the SDIP has no

free parameters. However the SDIP is formulated as a two-point closure theory in a

Lagrangian framework, with corresponding limitations on the statistics that it can be

used to calculate. For example, in the context of the work described here, the SDIP

gives a result for the Lagrangian two-point, two-time velocity and scalar correlations,

but not the Eulerian two-point, two-time correlations discussed in Chapter 3.

Possibilities for future work include the use of the cospectrum results to help build

subgrid models for the scalar flux. Pullin and Saffman [42] were able to relate subgrid

stress terms to the energy spectrum and orientation pdf of subgrid vortex structures,

and this result together with the stretched-spiral vortex model was used by Misra

and Pullin [32] to perform successful large-eddy simulations. It may be possible

to do something similar for the subgrid terms in the passive scalar equation using

the velocity-scalar cospectrum, although this is made difficult by the nature of the

stretched-spiral vortex model result for the cospectrum, for example, the dependence

of the planar contribution on the choice of vortex core. A comparison with the vortex-

based subgrid scalar flux model of Pullin [38] would also be useful.

Another interesting possibility for future work is the calculation of the scalar

spectrum using the SDIP in the case of a mean scalar gradient. Goto and Kida [14]

considered the case of the scalar spectrum for a statistically isotropic scalar field.

Here we have considered the case of a statistically non-isotropic scalar field, but the



105

cospectrum was nonetheless describable using a single isotropic function because of

the condition of incompressibility. The SDIP calculation of the scalar spectrum in

the axisymmetric case would be more difficult, but it would be interesting to see, for

example, the effect of the mean scalar gradient on the Obukhov-Corrsin constant.

Also, because the SDIP equation for the passive scalar spectrum would then involve

the velocity-scalar cospectrum, in a sense some of the work has already been done.
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Appendix A Properties of the

velocity-scalar cross spectrum

The velocity field is assumed to be statistically isotropic and homogeneous. The

scalar fluctuation is statistically homogeneous, with the mean scalar gradient given

by the vector µi. We define Fuic(k) to be the Fourier transform of Ruic(r),

Fuic(k) =
1

(2π)3

∫
Ruic(r)e

−ik·rdr. (A.1)

Then Fuic is a first-order tensor that is axisymmetric about µi, and so must have the

following form

Fuic(k) = A1 ki + A2 µi, (A.2)

where A1 and A2 are functions of kiµi, k and µ. Using the incompressibility of the

velocity field we have that

ki Fuic = A1 k2 + A2 µi ki = 0. (A.3)

Using this relation, and defining A3 = −A1 k2/(µjkj), we find that

Fuic(k) = A3(k, µ, kjµj)

(
µi − kjµj

k2
ki

)
. (A.4)

We will now use the fact that the equation governing the scalar is linear. If the

spectrum is measured after a sufficiently long time, the effect of initial fluctuations

about the mean gradient will have decayed to zero, and the scalar fluctuation must

have a linear dependence on the vector µi. Also Fuic(k) depends linearly on the

scalar, and so must also depend linearly on µi. Therefore A3 = A3(k) is a function

of k, and has no dependence on kiµi or µ. A similar analysis to the above is given in
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Herr, Wang and Collins [17].

We will now use this simplified form for Fuic(k) to relate the shell-summed cospec-

trum and one-dimensional cross spectrum. We specialize to the case where µ1 = µ

and µ2 = µ3 = 0, and consider the one-dimensional cross spectrum in the k3 direction.

Then it is easy to show that

F 1D
uic

(k3) =

∫ ∞

−∞

∫ ∞

−∞
Fuic(k) dk1 dk2. (A.5)

Changing to polar coordinates k1 = k2d cos θ and k2 = k2d sin θ, and performing the

θ integral gives F 1D
u2c(k3) = F 1D

u3c(k3) = 0. Making a further change of integration

variables from k2d to k gives

F 1D
uic

(k3) = µπ

∫ ∞

k3

A3(k)

(
k +

k2
3

k

)
dk. (A.6)

We can also find the shell-summed cospectrum in terms of A3(k) as follows,

Cuic(k) =

∫
S

Fuic(k) dSk. (A.7)

Using spherical polar coordinates we find that Cu2c(k) = Cu3c(k) = 0, and

Cu1c(k) =
8π

3
k2 A3(k) µ. (A.8)

Then comparing (A.6) and (A.8) we have that

F 1D
u1c(k3) =

3

8

∫ ∞

k3

k2 + k2
3

k3
Cu1c(k) dk. (A.9)

Finally we can easily show that the quadrature spectrum, Q1D
u1c(k3), must be zero.

Noting that Fuic(k) is the Fourier transform of a real function gives Fuic(−k) =

F∗
uic

(k). Also equation (A.4) implies that Fuic(−k) = Fuic(k), and so A3(k) is real,

and the quadrature spectrum must be zero.
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Appendix B Effect on the scalar

spectrum of axial scalar variation

In their calculation of the scalar spectrum PL assumed that the scalar had no x3

dependence. We will now consider the effect of an x3 dependence in the particular

case when the scalar initial condition is given by a gradient in the lab frame. An

expression for the scalar spectrum is given by replacing Mji vj(x, t) with ct(x, t) in

equation (2.70),

Ec(k) =
N c

(2π)3
< 〈

∫
S

∫
V

∫ tc

0

∫
V

ct(x, t) ct(x + r, t) e−ik·r dx dt dr dSk 〉 >, (B.1)

where we are working in vortex fixed coordinates. We decompose c(x, t) using equa-

tion (2.50), and assume the initial conditions (2.51). We set c′(x, 0) = 0, because our

solution (2.54) for c3 is only valid for a linear initial condition. This approximation

was not necessary in the case of the cross spectrum, where we were able to elimi-

nate the c′ contribution by making an assumption about the statistical distribution

of initial conditions. The orientation average may be performed immediately using

the integrals (2.72) to give

Ec(k) =
N c

3 (2π)3
〈
∫

S

∫
V

∫ tc

0

∫
V

3∑
j=1

cj(x, t) cj(x + r, t) e−ik·r dx dt dr dSk 〉. (B.2)

The terms in the integrand involving c1 and c2 have no x3 dependence and so were

dealt with in PL. We will consider Ec3 ,the contribution from c3. We assume ν = D
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and use solution (2.54) for c3. Then we have that

c3(x, t) c3(x + r, t) = µ2 exp(−2 at) (x3 r3 + x2
3)

− µ2 a−1 exp(−at) sinh(at) (x3 v3(x + r, t) + x3 v3(x, t) + r3 v3(x, t))

+ µ2 a−2 sinh2(at) v3(x, t) v3(x + r, t)

(B.3)

We will now show that the first term in (2.54) does not contribute to the scalar

spectrum. Noting that v3(x) has no x3 dependence, terms in (B.3) that are linear in

x3 will be eliminated upon integration over x3. Also terms that are linear in v3 will be

eliminated by performing the average over initial conditions. The term involving x2
3

will not contribute to the high wavenumber spectrum. Therefore the only contribution

comes from the second term of (2.54). We again simplify by replacing the average

over initial conditions with one particular initial condition.

Changing to Fourier space using (2.74), and after some algebra, we find

Ec3(k) =
N(2π)2

3

∫ tc

0

∫ 2π

0

µ2 a−2 sinh2(at) û3 v̂3
∗ k dθk S(t) dt. (B.4)

This is very similar to expression (2.77) for the axial contribution to the cross spec-

trum, except for a factor in the integrand of −µ/a sinh(at). Following a similar

analysis to sections 2.2.2 and 2.2.2, and keeping terms in the integrand of O(τ−1), we

find

Ec3(k) =
2πµ2N

9
k−1 a−3 exp

(
−2 ν k2

3 a

) ∞∑
n=1

∫ ∞

0

ρ |Ǔ (0)
n (ρ)|2 dρ

+
4πµ2N

9
k−5/3 a−8/3 exp

(
−ν k2

3 a

) ∞∑
n=1

n2/3

∫ ∞

0

|Λ(ρ)|2/3 Re
(Ǔ (0)

n (ρ)Π∗
n

)
dρ.

(B.5)

Thus the new contribution to Ec is a combination of k−1 and k−5/3 power laws

in a certain range. The wavenumber dependence is the same as was found in PL,

equations (81-85), for scalar initial conditions with no x3 dependence, and so the new

contribution does not alter the nature of the spectrum.
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Appendix C SDIP evolution equations

for W̃i(k, t, t) and W̃i(k, t, t′)

Here we will give the derivations of equations (2.162) and (2.164). Our starting point

is the exact equation (2.143) for the evolution of W̃i(k, t, t). Decomposing the velocity

and scalar fields, and making use of assumption (ii), the two triple correlations in

equation (2.143) may be written as

−i kj

(
2π

L

)6 ∑
p

∑
q

(k+p+q=0)

[
ũ

(1)
j (−p, t‖k,p,q) c̃(0)(−q, t‖k,p,q) ũ

(0)
i (−k, t‖k,p,q)

+ ũ
(0)
j (−p, t‖k,p,q) c̃(1)(−q, t‖k,p,q) ũ

(0)
i (−k, t‖k,p,q)

+ ũ
(0)
j (−p, t‖k,p,q) c̃(0)(−q, t‖k,p,q) ũ

(1)
i (−k, t‖k,p,q)

]
(C.1)

+
i

2

(
2π

L

)6

P̃ijm(k)
∑
p

∑
q

(k+p+q=0)

[
ũ

(1)
j (p, t‖k,p,q) ũ

(0)
m (q, t‖k,p,q) c̃(0)(k, t‖k,p,q)

+ ũ
(0)
j (p, t‖k,p,q) ũ

(1)
m (q, t‖k,p,q) c̃(0)(k, t‖k,p,q)

+ ũ
(0)
j (p, t‖k,p,q) ũ

(0)
m (q, t‖k,p,q) c̃(1)(k, t‖k,p,q)

]
(C.2)

Note that we choose k, p, and q as the triad of non-interacting wavenumbers for each

term in the double summation. Consider the first term of (C.1). We can substitute
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for the velocity deviation field using the following expression derived in [24],

ũ
(1)
i (k, t‖k0,p0,q0) = i

(2π)9

L6
P̃abc(k)

∫ t

t0

dt′ G̃(E0)
ia (k, t| − k, t′‖k0,p0,q0)

× [ − δ3
k−k0

ũ
(0)
b (−p0, t

′‖k0,p0,q0) ũ(0)
c (−q0, t

′‖k0,p0,q0)

− δ3
k+k0

ũ
(0)
b (p0, t

′‖k0,p0,q0) ũ(0)
c (q0, t

′‖k0,p0,q0)

+ (k0 → p0 → q0 → k0) ] , (C.3)

so that

[first term of (C.1)] =

kj
(2π)15

L12

∑
p

∑
q

(k+p+q=0)

P̃abc(p)

∫ t

t0

dt′ G̃
(E0)
ja (−p, t|p, t′‖k,p,q)

× ũ
(0)
b (k, t′‖k,p,q) ũ

(0)
c (q, t′‖k,p,q) c̃(0)(−q, t‖k,p,q) ũ

(0)
i (−k, t‖k,p,q).

(C.4)

This is rewritten using assumption (ii) as

[first term of (C.1)] =

= kj
(2π)15

L12

∑
p

∑
q

(k+p+q=0)

P̃abc(p)

∫ t

t0

dt′ G̃
(E0)
ja (−p, t|p, t′‖k,p,q)

× ũ
(0)
b (k, t′‖k,p,q) ũ

(0)
i (−k, t‖k,p,q) ũ

(0)
c (q, t′‖k,p,q) c̃(0)(−q, t‖k,p,q).

(C.5)

Next we make use of results derived in Appendix E,

W̃i(k, t, t′) =

(
2π

L

)3

c̃(0)(k, t‖k0,p0,q0) ũ
(0)
i (−k, t′‖k0,p0,q0). (C.6)

and in [24],

Q̃ij(k, t, t′) =

(
2π

L

)3

ũ
(0)
i (k, t‖k0,p0,q0) ũ

(0)
j (−k, t′‖k0,p0,q0), (C.7)

G̃
(E0)
ij (k, t|k′, t′‖k0,p0,q0) = G̃

(L0)
ij (t|k,k′, t′‖k0,p0,q0), (C.8)
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(2π)6

L3
G̃

(L0)
im (t|k,−k, t′‖k0,p0,q0) P̃mj(k) = G̃ij(k, t, t′), (C.9)

to find

[first term of (C.1)] = kj

(
2π

L

)3 ∑
p

∑
q

(k+p+q=0)

∫ t

t0

dt′ Q̃ib(−k, t, t′) W̃c(−q, t, t′)

×
[
pc G̃jb(−p, t, t′) + pb G̃jc(−p, t, t′)

]
. (C.10)

Turning now to the second term of (C.1), we perform a similar procedure, and

begin by substituting for c̃(1)(−q, t‖k,p,q) according to equation (2.161). We use

assumption (i) to change ũj to ũ
(0)
j , and also make use of assumption (ii) to find

[second term of (C.1)]

= kj
(2π)15

L12

∑
p

∑
q

(k+p+q=0)

ql

∫ t

t0

dt′ G̃E(0)(−q, t|q, t′‖k,p,q)

×
[
ũ

(0)
j (−p, t‖k,p,q) ũ

(0)
l (p, t′‖k,p,q) c̃(0)(k, t′‖k,p,q) ũ

(0)
i (−k, t‖k,p,q)

+ ũ
(0)
l (k, t′‖k,p,q) ũ

(0)
i (−k, t‖k,p,q) c̃(0)(p, t′‖k,p,q) ũ

(0)
j (−p, t‖k,p,q)

]
.

(C.11)

It is shown in Appendix E that

X̃i(k, t, t′) =

(
2π

L

)3

ũ
(0)
i (k, t‖k0,p0,q0) c̃(0)(−k, t′‖k0,p0,q0), (C.12)

and in [14] that

G̃E(0)(k, t| − k, t′‖k0,p0,q0) = G̃(L)(t|k,−k, t′), (C.13)
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so that

[second term of (C.1)] = kj
(2π)9

L6

∑
p

∑
q

(k+p+q=0)

ql

∫ t

t0

dt′ G̃(L)(t| − q,q, t′)

×
[
Q̃jl(−p, t, t′) X̃i(−k, t, t′) + Q̃il(−k, t, t′) X̃j(−p, t, t′)

]
.

(C.14)

It remains to find a more useful expression for G̃(L)(t|k,−k, t′). From equation (2.149)

we can write

∂

∂t
G̃(L)(t|k,−k, t′) = −D

(2π)6

L3

∑
p

p2 G̃(E)(p, t| − k, t′) φ̃(−p, t|k, t′)

= −D
(2π)6

L3

∑
p

p2 G̃E(0)(p, t| − k, t′‖k0,p0,q0) φ̃(0)(−p, t|k, t′‖k0,p0,q0)

= −D k2 G̃E(0)(k, t| − k, t′‖k0,p0,q0)

= −D k2 G̃(L)(t|k,−k, t′),

(C.15)

where we have used assumptions (i) and (iii), and (E.2) and (C.13). This can be

solved with initial condition (2.150) to give

G̃(L)(t|k,−k, t′) =
L3

(2π)6
exp[−D k2 (t − t′)]. (C.16)

Therefore,

[second term of (C.1)] = kj
(2π)9

L6

∑
p

∑
q

(k+p+q=0)

ql

∫ t

t0

dt′ exp[−D q2 (t − t′)]

×
[
Q̃jl(−p, t, t′) X̃i(−k, t, t′) + Q̃il(−k, t, t′) X̃j(−p, t, t′)

]
.

(C.17)

Performing a similar procedure on the remaining terms in (C.1) and (C.2) results in

equation (2.162).
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Turning now to the evolution of the two-time correlation W̃i(k, t, t′), we can ap-

proximate the diffusive term in (2.144) as

− D
(2π)9

L6

∑
p

p2 c̃(p, t) φ̃(−p, t|k, t′) ũi(−k, t′)

= −D
(2π)9

L6

∑
p

p2 c̃(0)(p, t‖k0,p0,q0) φ̃(0)(−p, t|k, t′‖k0,p0,q0) ũ
(0)
i (−k, t′‖k0,p0,q0)

= −D

(
2π

L

)3

k2 c̃(0)(k, t‖k0,p0,q0) ũ
(0)
i (−k, t′‖k0,p0,q0)

= −D k2 W̃i(k, t, t′),

(C.18)

where we have used assumptions (i) and (iii), and equations (E.2) and (E.3). Substi-

tuting into equation (2.144) leads to (2.164).
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Appendix D SDIP evolution equation for

X̃i(k, t, t′)

Here we will outline the derivation of equation (2.165). We begin with the evolution

equation (2.145) for Ỹi(k, t, t′). Making the DIA decompositions for the velocity,

position function, and scalar fields, the viscous term becomes

− ν
(2π)9

L6

∑
p

p2 c̃(−k, t′) ũi(p, t) φ̃(−p, t|k, t′)

= −ν
(2π)9

L6

∑
p

p2 c̃(0)(−k, t′‖k0,p0,q0) ũ
(0)
i (p, t‖k0,p0,q0) φ̃(0)(−p, t|k, t′‖k0,p0,q0)

= −ν

(
2π

L

)3

k2 c̃(0)(−k, t′‖k0,p0,q0) ũ
(0)
i (k, t‖k0,p0,q0)

= −ν k2 X̃i(k, t, t′),

(D.1)

where we have used assumptions (i) and (iii), and equations (E.2) and (E.4). Again

using assumptions (i), (iii), and (E.2) we see that the quadruple correlation in (2.145)

leads to three terms proportional to ki (containing a deviation field ũ
(1)
m (p, t), ũ

(1)
n (q, t),

and c̃(1)(−k, t′) , respectively), a term with no deviation field that is zero by assump-

tion (ii), and the following term,

−i
(2π)12

L9

∑
p

∑
q

∑
r

(p+q+r=0)

ri rm rn

r2

× c̃(0)(−k, t′‖r,p,q) ũ
(0)
m (p, t‖r,p,q) ũ

(0)
n (q, t‖r,p,q) φ̃(1)(r, t|k, t′‖r,p,q)

(D.2)
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We now substitute for φ̃(1)(r, t|k, t′‖r,p,q) with the following equation derived in Ref.

[24],

φ̃(1)(k, t|k′, t′‖k0,p0,q0) = −i kj
(2π)9

L6

∫ t

t′
dt′′ φ̃(0)(k, t| − k, t′′‖k0,p0,q0)

× [ δ3
k−k0

ũ
(0)
j (−p0, t

′′‖k0,p0,q0) φ̃(0)(−q0, t
′′|k′, t′‖k0,p0,q0)

+ δ3
k−k0

ũ
(0)
j (−q0, t

′′‖k0,p0,q0) φ̃(0)(−p0, t
′′|k′, t′‖k0,p0,q0)

+ δ3
k+k0

ũ
(0)
j (p0, t

′′‖k0,p0,q0) φ̃(0)(q0, t
′′|k′, t′‖k0,p0,q0)

+ δ3
k+k0

ũ
(0)
j (q0, t

′′‖k0,p0,q0) φ̃(0)(p0, t
′′|k′, t′‖k0,p0,q0)

+ (k0 → p0 → q0 → k0) ] .

(D.3)

Using assumption (iii) and equation (E.2), and after some algebra, expression (D.2)

becomes

−2
(2π)9

L9

∑
p

∑
q

(k+p+q=0)

qi qm qn qj

q2

∫ t

t′
dt′′

× c̃(0)(−k, t′‖k,p,q) ũ
(0)
n (k, t‖k,p,q) ũ

(0)
m (p, t‖k,p,q) ũ

(0)
j (−p, t′′‖k,p,q).

(D.4)

It is convenient to take the incompressible projection of equation (2.145), so that

terms proportional to ki drop out, and use of (C.7) and (E.4) results in equation

(2.165).
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Appendix E SDIP expressions for

W̃i(k, t, t′) and X̃i(k, t, t′)

Here we will relate W̃i(k, t, t′) and X̃i(k, t, t′) to c̃(0)(k, t‖k0,p0,q0) and

ũ
(0)
i (k, t‖k0,p0,q0). Starting with the definition (2.141) of W̃i(k, t, t′), and using

(2.138) and assumption (i), we can write

W̃i(k, t, t′) =
(2π)9

L6

∑
k′

c̃(k′, t) φ̃(−k′, t|k, t′) ũi(−k, t′)

=
(2π)9

L6

∑
k′

c̃(0)(k′, t‖k0,p0,q0) φ̃(0)(−k′, t|k, t′‖k0,p0,q0)

×ũ
(0)
i (−k, t′‖k0,p0,q0). (E.1)

Then, using assumption (iii) and a result from [24],

φ̃(0)(k, t|k′, t′‖k0,p0,q0) =
L3

(2π)6
δ3
k+k′ , (E.2)

gives

W̃i(k, t, t′) =

(
2π

L

)3

c̃(0)(k, t‖k0,p0,q0) ũ
(0)
i (−k, t′‖k0,p0,q0). (E.3)

Similarly for X̃i(k, t, t′) defined by (2.156),

X̃i(k, t, t′) =
(2π)9

L6
P̃ia(k)

∑
k′

ũa(k′, t) φ̃(−k′, t|k, t′) c̃(−k, t′)

=
(2π)9

L6

∑
k′

ũ
(0)
a (k′, t‖k0,p0,q0) φ̃(0)(−k′, t|k, t′‖k0,p0,q0)

×c̃(0)(−k, t′‖k0,p0,q0)

=

(
2π

L

)3

ũ
(0)
i (k, t‖k0,p0,q0) c̃(0)(−k, t′‖k0,p0,q0). (E.4)
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Note that we consistently have t ≥ t′, and so equations (E.3) and (E.4) do not mean

that W̃i(k, t, t′) and X̃i(k, t, t′) are equivalent in this approximation.



119

Appendix F Behavior of the modal time

correlation function at zero delay time

Consider the derivative of Rjj(r, t, σ) with respect to σ evaluated at σ = 0,

∂

∂ σ
Rjj(r, t, σ)

∣∣∣∣
σ=0

= uj(x, t)
∂

∂ σ
uj(x + r, t + σ)

∣∣∣∣
σ=0

= uj(x, t)
∂

∂ t
uj(x + r, t). (F.1)

The assumption of homogeneity then gives

∂

∂ σ
Rjj(−r, t, σ)

∣∣∣∣
σ=0

= uj(x, t)
∂

∂ t
uj(x − r, t)

= uj(x + r, t)
∂

∂ t
uj(x, t), (F.2)

so that
∂

∂ σ
Rjj(r, t, σ)

∣∣∣∣
σ=0

+
∂

∂ σ
Rjj(−r, t, σ)

∣∣∣∣
σ=0

=
∂

∂ t
Rjj(r, t, 0). (F.3)

Then we have that

∂

∂ σ
Fjj(k, t, σ)

∣∣∣∣
σ=0

=
1

(2π)3

∫
S

∫
V

(
− ∂

∂ σ
Rjj(−r, t, σ)

∣∣∣∣
σ=0

+
∂

∂ t
Rjj(r, t, 0)

)
e−ik·rdr dSk

= − 1

(2π)3

∫
S

∫
V

∂

∂ σ
Rjj(r, t, σ)

∣∣∣∣
σ=0

e−ik·rdr dSk + 2
∂

∂t
E(k, t)

= − ∂

∂ σ
Fjj(k, t, σ)

∣∣∣∣
σ=0

+ 2
∂

∂t
E(k, t),

(F.4)
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where we have made a change of integration variables from r to −r, and from k to

−k. Thus we have the result

∂

∂ σ
R(k, t, σ)

∣∣∣∣
σ=0

=
∂

∂ σ
Fjj(k, t, σ)

∣∣
σ=0

2 E(k, t)
− Fjj(k, 0, t)

4 E(k, t)2

∂

∂t
E(k, t)

= 0. (F.5)
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Appendix G Asymptotic evaluation of

wn(ρ
′
s) − wn(ρs)

We wish to find wn(ρ′
s) − wn(ρs) to leading order in the small parameters ε1 = aσ

and ε2 = 1/(aτ). Using equation (3.27) to relate τ ′ to τ , we find that

aτ ′ = aτ + (aσ)(aτ) + O(ε1) + O(ε2
1/ε2). (G.1)

To relate ρ′
s to ρs, we start with the exact relation Λ(ρ′

s) aτ ′ (1+aτ ′)1/2 = Λ(ρs) aτ (1+

aτ)1/2. Substituting for (aτ ′) from equation (G.1) we find

Λ(ρ′
s) = Λ(ρs)

(
1 − 3

2
aσ

)
+ O(ε2

1) + O(ε1 ε2). (G.2)

Taylor expanding Λ(ρ′
s) about ρs, and comparing with equation (G.2) we find

ρ′
s = ρs − 3

2
(aσ)

Λ(ρs)

∆(ρs)
+ O(ε2

1) + O(ε1 ε2). (G.3)

Finally, Taylor expanding Ω(ρ′
s) about ρs, and using equation (G.3) gives

Ω(ρ′
s) = Ω(ρs) − 3

2
(aσ)

Λ(ρs)
2

∆(ρs)
+ O(ε2

1) + O(ε1 ε2). (G.4)

Substituting for τ ′, ρ′
s and Ω(ρ′

s) in the definition of wn(ρ′
s) gives

wn(ρ′
s) − wn(ρs) = aσ

(
−n Ω(ρs) τ +

3 n τ Λ(ρs)
2

2 ∆(ρs)
+

k

(aτ)1/2

(
3 Λ(ρs)

2 ∆(ρs)
+

ρs

2

))
+ O(ε1) + O(ε2

1/ε2), (G.5)
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where we have used that (k r0) is O(ε
−3/2
2 ) from equation (3.26). Then substituting

for τ using equation (3.26), and after some algebra we find

wn(ρ′
s) − wn(ρs) = k2/3 σ n1/3 a2/3 e(ρs) + O((k r0)

2/3 (a σ)2) + O(aσ), (G.6)

where

e(ρs) =

( |Λ(ρs)|1/3ρs

2
− Ω(ρ)

|Λ(ρs)|2/3

)
, (G.7)

and we have assumed Λ(ρ) = −|Λ(ρ)|.
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Appendix H Nomenclature

Roman letters

ai, a Background strain-rate in a stretched vortex

c Scalar fluctuation

c′ Difference between the scalar, and a scalar with an initial

condition of the scalar gradient, in a stretched vortex

ci Scalar with initial condition of a gradient in the ‘i’ direction

ct Scalar field including the uniform gradient

cL Lagrangian scalar

cc Characteristic value of the scalar

C Courant number

Cuic Shell-summed velocity-scalar cospectrum

C
(a)
uic, C

(p)
uic Shell-summed velocity-scalar cospectrum

(axial/planar velocity contribution)

C1D
uic

1D velocity-scalar cospectrum

Cn Scalar polar harmonic

D Diffusivity

E Energy spectrum

Ec Scalar spectrum

F 1D
uic

1D velocity-scalar cross-spectrum

Fc Fourier transform of the two-time, two-point scalar correlation

Fij Fourier transform of the two-time, two-point velocity correlation

Fuic Fourier transform of the two-point velocity-scalar correlation

G̃
(E)
ij Eulerian velocity response function

G̃ij Incompressible projection of G̃
(L)
ij
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G̃
(L)
ij Lagrangian velocity response function

G̃(L) Lagrangian scalar response function

G̃(E) Eulerian scalar response function

G† Isotropic form of the Eulerian velocity response function

H Definite time integral of Q

I0 Modified Bessel function

Jn Bessel function

k Wavenumber

kK Kolmogorov wavenumber

kB Batchelor wavenumber

kC Obukhov-Corrsin wavenumber

kP Spectral peak wavenumber

K Kolmogorov constant

l Turbulent integral length scale

lε Dissipation length scale

L Size of box

Mij Rotation matrix

nk Number of modes in the DNS in one direction

N c Rate of creation of vortex structures per unit time and volume

N Rate of creation of length of vortex structures per unit time

and volume

p(U) Pdf of the gross velocities of the vortex structures

P (α, β, γ) Pdf for orientation of vortex structures

Pijk,Pij Incompressible projection operators

Q Non-dimensional form of Q†

Q† Isotropic form of Q̃ij

Q̃ij Incompressible projection of Ṽij

Q1D
uic

1D velocity-scalar quadrature spectrum

r0 Characteristic vortex radius
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R Velocity modal time correlation function

Rc Scalar modal time correlation function

Rl Reynolds number based on the integral length scale

Rλ Taylor Reynolds number

Řc As Rc but for vortex structures with stationary centers

Ř As R but for vortex structures with stationary centers

Rc Two-time, two-point scalar correlation

Rij Two-time, two-point velocity correlation

Ruic Two-point velocity-scalar correlation

S Stretching factor for vortex structures

Sc Schmidt number

tc Vortex structure lifetime

Ti Times for collection of two-time statistics in the DNS

Tstat Time over which statistics were collected in the DNS

Teddy Eddy turnover time in the DNS

ui Velocity

ǔi Velocity relative to frame moving with the vortex structure

ugross Characteristic gross velocity of the vortex structures

uL
i Lagrangian velocity

urms Root-mean-square turbulent velocity

U Gross velocity of a vortex structure

U Unstretched axial velocity

v3,n Polar harmonic of the axial velocity

vi Velocity minus the background linear velocity field in

a stretched vortex

V † Isotropic form of Ṽij

Vij Lagrangian two-time, two-point velocity autocorrelation

W Non-dimensional form of W †
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Ws Rescaling of W using the Schmidt number

W † Isotropic form of W̃i

Wi Two-point, two-time, cross correlation of the Lagrangian

scalar and the velocity

W Unstretched axial vorticity

W0 Azimuthal average of unstretched axial vorticity

X† Isotropic form of X̃i

X̃i Incompressible projection of Ỹi

Yi Two-point, two-time, cross correlation of the Lagrangian

velocity and the scalar

Zij Lagrangian two-time, two-point scalar autocorrelation

Greek letters

α Euler angle

α Rescaling exponent in subsection 2.3.7

β Euler angle

β Rescaling exponent in subsection 2.3.7

χi Lagrangian position

δ Offset angle

∆ Derivative of Λ

ε Energy dissipation

εc Scalar dissipation

φ Lagrangian position function

Φ Unstretched scalar

γ Euler angle

Γ Circulation

η Kolmogorov length scale

κ Wavenumber scaled with the Kolmogorov wavenumber

κs Rescaling of κ using the Schmidt number

Λ Derivative of Ω
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µ, µi Scalar gradient magnitude and vector

ν Viscosity

π Pressure-density ratio

π∗ Reduced pressure

θk Angle in wavenumber space

θn Offset angle

ρ Stretched radial coordinate

ρs ρ at point of stationary phase

σ Delay time for modal time correlations

τ Stretched time coordinate

τs τ at point of stationary phase

τk Inertial time variable

τc Characteristic timescale

ωi(x1, x2, t) Vorticity

ωn(ρ, τ) Vorticity polar harmonic

Ω Azimuthally averaged angular velocity

ψi(x1, x2, t) Vector potential (stream function)

ψn(ρ, τ) Streamfunction polar harmonic

Ψ Unstretched stream function

ζ Constant in inertial-convective form of the shell-summed

velocity-scalar cospectrum

Other symbols

u′
i, x

′
i, r

′
i, k

′
i Laboratory frame quantities when the distinction is necessary

·̂ 2d Fourier transform

·̃ 3d Fourier transform

· Ensemble average

·̄ Non-dimensional variables in subsection 3.2.3
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