4 research outputs found

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    The impact of tyrosine kinase 2 (Tyk2) on the proteome of murine macrophages and their response to lipopolysaccharide (LPS)

    No full text
    Tyrosine kinase 2 (Tyk2) belongs to the Janus kinase (Jak) family and is involved in signalling via a number of cytokines. Tyk2-deficient mice are highly resistant to lipopolysaccharide (LPS)-induced endotoxin shock. Macrophages are key players in the pathogenesis of endotoxin shock and, accordingly, defects in the LPS responses of Tyk2−/− macrophages have been reported. In the present study, the molecular role of Tyk2 is investigated in more detail using a proteomics approach. 2-D DIGE was applied to compare protein patterns from wild-type and Tyk2−/− macrophages and revealed significant differences in protein expression patterns between the genotypes before and after LPS treatment. Twenty-one proteins deriving from 25 differentially expressed spots were identified by MALDI/ESI MS. Among them, we show for N-myc interactor that its mRNA transcription/stability is positively influenced by Tyk2. In contrast, LPS-induced expression of plasminogen activator 2 protein but not mRNA is strongly enhanced in the absence of Tyk2. Our data furthermore suggest an influence of Tyk2 on the subcellular distribution of elongation factor 2 and on LPS-mediated changes in the peroxiredoxin 1 spot pattern. Thus, our results imply regulatory roles of Tyk2 at multiple levels and establish novel connections between Tyk2 and several cellular proteins
    corecore