5,089 research outputs found
Alternative derivation of the Feigel effect and call for its experimental verification
A recent theory by Feigel [Phys. Rev. Lett. {\bf 92}, 020404 (2004)] predicts
the finite transfer of momentum from the quantum vacuum to a fluid placed in
strong perpendicular electric and magnetic fields. The momentum transfer arises
because of the optically anisotropic magnetoelectric response induced in the
fluid by the fields. After summarising Feigel's original assumptions and
derivation (corrected of trivial mistakes), we rederive the same result by a
simpler route, validating Feigel's semi-classical approach. We then derive the
stress exerted by the vacuum on the fluid which, if the Feigel hypothesis is
correct, should induce a Poiseuille flow in a tube with maximum speed m/s (2000 times larger than Feigel's original prediction). An experiment
is suggested to test this prediction for an organometallic fluid in a tube
passing through the bore of a high strength magnet. The predicted flow can be
measured directly by tracking microscopy or indirectly by measuring the flow
rate (ml/min) corresponding to the Poiseuille flow. A second
experiment is also proposed whereby a `vacuum radiometer' is used to test a
recent prediction that the net force on a magnetoelectric slab in the vacuum
should be zero.Comment: 20 pages, 1 figures. revised and improved versio
Impurity in a Bose-Einstein condensate in a double well
We compare and contrast the mean-field and many-body properties of a
Bose-Einstein condensate trapped in a double well potential with a single
impurity atom. The mean-field solutions display a rich structure of
bifurcations as parameters such as the boson-impurity interaction strength and
the tilt between the two wells are varied. In particular, we study a pitchfork
bifurcation in the lowest mean-field stationary solution which occurs when the
boson-impurity interaction exceeds a critical magnitude. This bifurcation,
which is present for both repulsive and attractive boson-impurity interactions,
corresponds to the spontaneous formation of an imbalance in the number of
particles between the two wells. If the boson-impurity interaction is large,
the bifurcation is associated with the onset of a Schroedinger cat state in the
many-body ground state. We calculate the coherence and number fluctuations
between the two wells, and also the entanglement entropy between the bosons and
the impurity. We find that the coherence can be greatly enhanced at the
bifurcation.Comment: 19 pages, 17 figures. The second version contains minor corrections
and some better figures (thicker lines
The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster
Recent Hubble Space Telescope images have allowed the determination with
unprecedented accuracy of motions and changes of shocks within the inner Orion
Nebula. These originate from collimated outflows from very young stars, some
within the ionized portion of the nebula and others within the host molecular
cloud. We have doubled the number of Herbig-Haro objects known within the inner
Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a
relatively few stars, with the optically visible X-ray source COUP 666 driving
many of them.
While some isolated shocks are driven by single collimated outflows, many
groups of shocks are the result of a single stellar source having jets oriented
in multiple directions at similar times. This explains the feature that shocks
aligned in opposite directions in the plane of the sky are usually blue shifted
because the redshifted outflows pass into the optically thick Photon Dominated
Region behind the nebula. There are two regions from which optical outflows
originate for which there are no candidate sources in the SIMBAD data base.Comment: 152 pages, 46 figures, 7 tables. Accepted by A
POLAR: Instrument and Results
We describe the design, performance, and results of a polarimeter used to make precision measurements of the 2.7 K cosmic microwave background. In the Spring of 2000 the instrument searched for polarized emission in three microwave frequency bands spanning 26–36 GHz. The instrument achieved high sensitivity and long-term stability, and has produced the most stringent limits to date on the amplitude of the large angular scale polarization of the cosmic microwave background radiation
A study of the toxic principle in red clover
A report on Department of Agricultural Chemistry research project 247, Forage Poisoning--P. [2].Digitized 2007 AES.Includes bibliographical references (page 12)
Magnetoelectric Effect in Ni-PZT-Ni Cylindrical Layered Composite Synthesized by Electro-deposition
The magnetoelectric (ME) coupling of cylindrical trilayered composite was
studied in this paper. The Ni-lead zirconate titanate (PZT)-Ni trilayered
cylindrical composite was synthesized by electro-deposition. The maximum ME
voltage coefficient of cylindrical ME composite is 35V/cm Oe, about three times
higher than that of the plate trilayered composite with the same raw materials
and magnetostrictive- piezoelectric phase thickness ratio. The high ME voltage
coefficient of cylindrical composite owes to the self-bound effect of circle.
Moreover, the resulting complex condition can induce a double peak in the field
dependence of ME coefficient.Comment: 11 pages, 5 figure
- …