4,452 research outputs found

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    Full text link
    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' response to particle radiation and to compare this response with other radiation data and environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773

    Statistical Uncertainties in Temperature Diagnostics for Hot Coronal Plasma Using the ASCA SIS

    Full text link
    Statistical uncertainties in determining the temperatures of hot (0.5 keV to 10 keV) coronal plasmas are investigated. The statistical precision of various spectral temperature diagnostics is established by analyzing synthetic ASCA Solid-state Imaging Spectrometer (SIS) CCD spectra. The diagnostics considered are the ratio of hydrogen-like to helium-like line complexes of Z14Z\ge14 elements, line-free portions of the continuum, and the entire spectrum. While fits to the entire spectrum yield the highest statistical precision, it is argued that fits to the line-free continuum are less susceptible to atomic data uncertainties but lead to a modest increase in statistical uncertainty over full spectral fits. Temperatures deduced from line ratios can have similar accuracy but only over a narrow range of temperatures. Convenient estimates of statistical accuracies for the various temperature diagnostics are provided which may be used in planning ASCA SIS observations.Comment: postscript file of 8 pages+3 figures; 4 files tarred, compressed and uuencoded. To appear in the Astrophysical Journal Letters; contents copyright 1994 American Astronomical Societ

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    Full text link
    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Alternative derivation of the Feigel effect and call for its experimental verification

    Full text link
    A recent theory by Feigel [Phys. Rev. Lett. {\bf 92}, 020404 (2004)] predicts the finite transfer of momentum from the quantum vacuum to a fluid placed in strong perpendicular electric and magnetic fields. The momentum transfer arises because of the optically anisotropic magnetoelectric response induced in the fluid by the fields. After summarising Feigel's original assumptions and derivation (corrected of trivial mistakes), we rederive the same result by a simpler route, validating Feigel's semi-classical approach. We then derive the stress exerted by the vacuum on the fluid which, if the Feigel hypothesis is correct, should induce a Poiseuille flow in a tube with maximum speed 100μ\approx 100\mum/s (2000 times larger than Feigel's original prediction). An experiment is suggested to test this prediction for an organometallic fluid in a tube passing through the bore of a high strength magnet. The predicted flow can be measured directly by tracking microscopy or indirectly by measuring the flow rate (1\approx 1ml/min) corresponding to the Poiseuille flow. A second experiment is also proposed whereby a `vacuum radiometer' is used to test a recent prediction that the net force on a magnetoelectric slab in the vacuum should be zero.Comment: 20 pages, 1 figures. revised and improved versio

    "Supersolid" self-bound Bose condensates via laser-induced interatomic forces

    Full text link
    We show that the dipole-dipole interatomic forces induced by a single off-resonant running laser beam can lead to a self-bound pencil-shaped Bose condensate, even if the laser beam is a plane-wave. For an appropriate laser intensity the ground state has a quasi-one dimensional density modulation --- a Bose "supersolid".Comment: 4 pages, 3 eps figure

    Measurements with the Chandra X-Ray Observatory's flight contamination monitor

    Get PDF
    NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor (FCM), a system of 16 radioactive calibration sources mounted to the inside of the Observatory's forward contamination cover. The purpose of the FCM is to verify the ground-to-orbit transfer of the Chandra flux scale, through comparison of data acquired during the ground calibration with those obtained in orbit, immediately prior to opening the Observatory's sun-shade door. Here we report results of these measurements, which place limits on the change in mirror--detector system response and, hence, on any accumulation of molecular contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    A Keck High Resolution Spectroscopic Study of the Orion Nebula Proplyds

    Get PDF
    We present the results of spectroscopy of four bright proplyds in the Orion Nebula obtained at a velocity resolution of 6 km/s. After careful isolation of the proplyd spectra from the confusing nebular radiation, the emission line profiles are compared with those predicted by realistic dynamic/photoionization models of the objects. The spectral line widths show a clear correlation with ionization potential, which is consistent with the free expansion of a transonic, ionization-stratified, photoevaporating flow. Fitting models of such a flow simultaneously to our spectra and HST emission line imaging provides direct measurements of the proplyd size, ionized density and outflow velocity. These measurements confirm that the ionization front in the proplyds is approximately D-critical and provide the most accurate and robust estimate to date of the proplyd mass loss rate. Values of 0.7E-6 to 1.5E-6 Msun/year are found for our spectroscopic sample, although extrapolating our results to a larger sample of proplyds implies that 0.4E-6 Msun/year is more typical of the proplyds as a whole. In view of the reported limits on the masses of the circumstellar disks within the proplyds, the length of time that they can have been exposed to ionizing radiation should not greatly exceed 10,000 years - a factor of 30 less than the mean age of the proplyd stars. We review the various mechanisms that have been proposed to explain this situation, and conclude that none can plausibly work unless the disk masses are revised upwards by a substantial amount.Comment: 23 pages, 8 figures, uses emulateapj.sty, accepted for publication in The Astronomical Journal (scheduled November 1999
    corecore