380 research outputs found

    Spatial and cell type transcriptional landscape of human cerebellar development

    Get PDF
    The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease

    Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    Full text link
    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.

    Intrathecal treatment of neoplastic meningitis due to breast cancer with a slow-release formulation of cytarabine

    Get PDF
    DepoCyte is a slow-release formulation of cytarabine designed for intrathecal administration. The goal of this multi-centre cohort study was to determine the safety and efficacy of DepoCyte for the intrathecal treatment of neoplastic meningitis due to breast cancer. DepoCyte 50 mg was injected once every 2 weeks for one month of induction therapy; responding patients were treated with an additional 3 months of consolidation therapy. All patients had metastatic breast cancer and a positive CSF cytology or neurologic findings characteristic of neoplastic meningitis. The median number of DepoCyte doses was 3, and 85% of patients completed the planned 1 month induction. Median follow up is currently 19 months. The primary endpoint was response, defined as conversion of the CSF cytology from positive to negative at all sites known to be positive, and the absence of neurologic progression at the time the cytologic conversion was documented. The response rate among the 43 evaluable patients was 28% (CI 95%: 14–41%); the intent-to-treat response rate was 21% (CI 95%: 12–34%). Median time to neurologic progression was 49 days (range 1–515(+)); median survival was 88 days (range 1–515(+)), and 1 year survival is projected to be 19%. The major adverse events were headache and arachnoiditis. When drug-related, these were largely of low grade, transient and reversible. Headache occurred on 11% of cycles; 90% were grade 1 or 2. Arachnoiditis occurred on 19% of cycles; 88% were grade 1 or 2. DepoCyte demonstrated activity in neoplastic meningitis due to breast cancer that is comparable to results reported with conventional intrathecal agents. However, this activity was achieved with one fourth as many intrathecal injections as typically required in conventional therapy. The every 2 week dose schedule is a major advantage for both patients and physicians. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Temozolomide followed by combined immunotherapy with GM-CSF, low-dose IL2 and IFNα in patients with metastatic melanoma

    Get PDF
    The purpose of this study is to determine the toxicity and efficacy of temozolomide (TMZ) p.o. followed by subcutaneous (s.c.) low-dose interleukin-2 (IL2), granulocyte-monocyte colony stimulating factor (GM-CSF) and interferon-alpha 2b (IFN alpha) in patients with metastatic melanoma. A total of 74 evaluable patients received, in four separate cohorts, escalating doses of TMZ (150-250 mg m(-2)) for 5 days followed by s.c. IL2 (4 MIU m(-2)), GM-CSF (2.5 microg kg(-1)) and IFN alpha (5 MIU flat) for 12 days. A second identical treatment was scheduled on day 22 and cycles were repeated in stable or responding patients following evaluation. Data were analysed after a median follow-up of 20 months (12-30 months). The overall objective response rate was 31% (23 out of 74; confidence limits 20.8-42.9%) with 5% CR. Responses occurred in all disease sites including the central nervous system (CNS). Of the 36 patients with responding or stable disease, none developed CNS metastasis as the first or concurrent site of progressive disease. Median survival was 252 days (8.3 months), 1 year survival 41%. Thrombocytopenia was the primary toxicity of TMZ and was dose- and patient-dependent. Lymphocytopenia (grade 3-4 CTC) occurred in 48.5% (34 out of 70) fully monitored patients following TMZ and was present after immunotherapy in two patients. The main toxicity of combined immunotherapy was the flu-like syndrome (grade 3) and transient liver function disturbances (grade 2 in 20, grade 3 in 15 patients). TMZ p.o. followed by s.c. combined immunotherapy demonstrates efficacy in patients with stage IV melanoma and is associated with toxicity that is manageable on an outpatient basi

    Low back pain as the presenting sign in a patient with primary extradural melanoma of the thoracic spine - A metastatic disease 17 Years after complete surgical resection

    Get PDF
    Primary spinal melanomas are extremely rare lesions. In 1906, Hirschberg reported the first primary spinal melanoma, and since then only 40 new cases have been reported. A 47-year-old man was admitted suffering from low back pain, fatigue and loss of body weight persisting for three months. He had a 17-year-old history of an operated primary spinal melanoma from T7-T9, which had remained stable for these 17 years. Routine laboratory findings and clinical symptoms aroused suspicion of a metastatic disease. Multislice computed tomography and magnetic resonance imaging revealed stage-IV melanoma with thoracic, abdominal and skeletal metastases without the recurrence of the primary process. Transiliac crest core bone biopsy confirmed the diagnosis of metastatic melanoma. It is important to know that in all cases of back ore skeletal pain and unexplained weight loss, malignancy must always be considered in the differential diagnosis, especially in the subjects with a positive medical history. Patients who have back, skeletal, or joint pain that is unresponsive to a few weeks of conservative treatment or have known risk factors with or without serious etiology, are candidates for imaging studies. The present case demonstrates that complete surgical resection alone may result in a favourable outcome, but regular medical follow-up for an extended period, with the purpose of an early detection of a metastatic disease, is highly recommended

    Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    Get PDF
    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described

    Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2). While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM) is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA.</p> <p>Methods</p> <p>RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF) and the effects on MMP2 activity (gel zymography), proliferation (CyQUANT), invasion (Matrigel transwell assay), and VEGF production (Western blotting, ELISA) were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells.</p> <p>Results</p> <p>Our data demonstrate that the OSM receptor (OSMR), but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity.</p> <p>Conclusions</p> <p>These data indicate OSM stimulation of human and canine OSA cells induces STAT3 activation, thereby enhancing the expression/activation of MMP2 and VEGF, ultimately promoting invasive behavior and tumor angiogenesis. As such, OSM and its receptor may represent a novel target for therapeutic intervention in OSA.</p

    Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    Get PDF
    BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings

    Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT

    Get PDF
    The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis
    corecore