127 research outputs found

    Medical student and academic staff perceptions of role models: an analytical cross-sectional study

    Get PDF
    BACKGROUND: This study explored the associations between the perceptions of students and the perceptions of academic staff about the characteristics of clinical lecturers at the Department of Internal Medicine at Kerman University of Medical Sciences (KUMS). It also assessed what characteristics constitute a 'role model' from the point of view of students and staff. METHODS: Staff and students were questioned about the characteristics of their colleagues and lecturers, respectively. They were asked about 15 characteristics under four headings: personality, teaching skill, group working and overall performance as a role model. Associations between lecturers' characteristics were explored using Pearson correlation and characteristics were allocated into groups by partition cluster method. In addition, predictors of being a valuable lecturer were assessed using logistic regression analysis. RESULTS: Based on staff responses, the strongest association observed was between honesty and being respectful (r = 0.93, p < 0.0001). Based on student responses, the strongest association observed was between being professional and honesty (r = 0.98, p < 0.0001). None of the correlations between student and staff perceptions were significant for any characteristic. Two groups were recognized among the characteristics. group one contained those characteristics which were related to the lecturer's activity; while the second group contained characteristics that were related to the personality or teaching performance of the lecturer. The predictors of lecturer as 'role model' (i.e., perceptions of students) consisted mostly of characteristics from the first group, while the predictors of a 'role model' by fellow academic staff consisted of characteristics that were in both groups. CONCLUSION: These findings showed considerable differences between the perceptions of students about their lecturers when compared with perceptions of staff about their colleagues. Students were more concerned with the personality of their lecturers, while staff also considered their ideas and behaviors. This suggests that a more comprehensive assessment of a lecturer's performance could be obtained by taking into account feedback from both students and colleagues

    Clearance of technetium-99m-DTPA and HRCT findings in the evaluation of patients with Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Clearance of inhaled technetium-labeled diethylenetriamine pentaacetate ((99m)Tc-DTPA) is a marker of epithelial damage and an index of lung epithelial permeability. The aim of this study was to investigate the role of (99m)Tc-DTPA scan in patients with Idiopathic Pulmonary Fibrosis (IPF). Our hypothesis is that the rate of pulmonary (99m)Tc-DTPA clearance could be associated with extent of High Resolution Computed Tomography (HRCT) abnormalities, cell differential of bronchoalveolar lavage fluid (BALF) and pulmonary function tests (PFTs) in patients with IPF. METHODS: We studied prospectively 18 patients (14 male, 4 female) of median age 67yr (range 55–81) with histologically proven IPF. HRCT scoring included the mean values of extent of disease. Mean values of these percentages represented the Total Interstitial Disease Score (TID). DTPA clearance was analyzed according to a dynamic study using a Venticis II radioaerosol delivery system. RESULTS: The mean (SD) TID score was 36 ± 12%, 3 patients had mild, 11 moderate and 4 severe TID. Abnormal DTPA clearance half-time (t(1/2)<40 min) was found in 17/18 (94.5%) [mean (SD) 29.1 ± 8.6 min]. TID was weakly correlated with the DTPA clearance (r = -0.47, p = 0.048) and with % eosinophils (r = 0.475, p = 0.05). No correlation was found between TID score or DTPA and PFTs in IPF patients. CONCLUSION: Our data suggest that (99m)Tc-DTPA lung scan is not well associated with HRCT abnormalities, PFTs, and BALF cellularity in patients with IPF. Further studies in large scale of patients are needed to define the role of this technique in pulmonary fibrosis

    Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants who require mechanical ventilation because of hyaline membrane disease (HMD). The development of BPD can be divided in an acute, a regenerative, a transitional, and a chronic phase. During these different phases, extensive remodeling of the lung parenchyma with re-epithelialization of the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1 (MMP-1) is an enzyme that is involved in re-epithelialization processes, and dysregulation of MMP-1 activity contributes to fibrosis. Localization of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from infants who died during different phases of BPD development. In all studied cases (n = 50) type-II pneumocytes were found to be immunoreactive for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes, play a role in the re-epithelialization process after acute lung injury. Although MMP-1 staining intensity remained constant in type-II pneumocytes during BPD development, TIMP-1 increased during the chronic fibrotic phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative for reduced collagenolytic activity by type-II pneumocytes in chronic BPD and may contribute to fibrosis. Fibrotic foci in chronic BPD contained fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate that decreased collagen turnover by fibroblasts contributes to fibrosis in BPD development

    Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Get PDF
    BACKGROUND: Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. METHODS: Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. RESULTS: This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. CONCLUSION: This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs

    Bioelectric properties of fetal alveolar epithelial monolayers

    No full text

    Effect of high-frequency oscillation on lung lymph flow

    No full text
    corecore