72 research outputs found

    The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep

    Get PDF
    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators

    Phase transformation of PbSe/CdSe nanocrystals from core-shell to Janus structure studied by photoemission spectroscopy

    Get PDF
    Photoelectron spectroscopic measurements have been performed, with synchrotron radiation on PbSe/CdSe heteronanocrystals that initially consist of core-shell structures. The study of the chemical states of the main elements in the nanocrystals shows a reproducible and progressive change in the valence-band and core-level spectra under photon irradiation, whatever the core and shell sizes are. Such chemical modifications are explained in light of transmission electron microscopy observations and reveal a phase transformation of the nanocrystals: The core-shell nanocrystals undergo a morphological change toward a Janus structure with the formation of semidetached PbSe and CdSe clusters. Photoelectron spectroscopy gives new insight into the reorganization of the ligands anchored at the surface of the nanocrystals and the modification of the electronic structure of these heteronanocrystals

    Gene expression patterns in four brain areas associate with quantitative measure of estrous behavior in dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decline noticed in several fertility traits of dairy cattle over the past few decades is of major concern. Understanding of the genomic factors underlying fertility, which could have potential applications to improve fertility, is very limited. Here, we aimed to identify and study those genes that associated with a key fertility trait namely estrous behavior, among genes expressed in four bovine brain areas (hippocampus, amygdala, dorsal hypothalamus and ventral hypothalamus), either at the start of estrous cycle, or at mid cycle, or regardless of the phase of cycle.</p> <p>Results</p> <p>An average heat score was calculated for each of 28 primiparous cows in which estrous behavior was recorded for at least two consecutive estrous cycles starting from 30 days post-partum. Gene expression was then measured in brain tissue samples collected from these cows, 14 of which were sacrificed at the start of estrus and 14 around mid cycle. For each brain area, gene expression was modeled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model. Genes whose expression patterns showed significant linear or quadratic relationships with heat scores were identified. These included genes expected to be related to estrous behavior as they influence states like socio-sexual behavior, anxiety, stress and feeding motivation (<it>OXT, AVP, POMC, MCHR1</it>), but also genes whose association with estrous behavior is novel and warrants further investigation.</p> <p>Conclusions</p> <p>Several genes were identified whose expression levels in the bovine brain associated with the level of expression of estrous behavior. The genes <it>OXT </it>and <it>AVP </it>play major roles in regulating estrous behavior in dairy cows. Genes related to neurotransmission and neuronal plasticity are also involved in estrous regulation, with several genes and processes expressed in mid-cycle probably contributing to proper expression of estrous behavior in the next estrus. Studying these genes and the processes they control improves our understanding of the genomic regulation of estrous behavior expression.</p

    How predictive is the MMSE for cognitive performance after stroke?

    Get PDF
    Cognitive deficits are commonly observed in stroke patients. Neuropsychological testing is time-consuming and not easy to administer after hospital discharge. Standardised screening measures are desirable. The Mini-Mental State Examination (MMSE) is the test most widely applied to screen for cognitive deficits. Despite its broad use, its predictive characteristics after stroke have not been exhaustively investigated. The aim of this study was to determine whether the MMSE is able to adequately screen for cognitive impairment and dementia after stroke and whether or not the MMSE can predict further deterioration or recovery in cognitive function over time. To this end, we studied 194 first-ever stroke patients without pre-stroke cognitive deterioration who underwent MMSEs and neuropsychological test batteries at 1, 6, 12, and 24 months after stroke. The MMSE score 1 month after stroke predicted cognitive functioning at later follow-up visits. It could not predict deterioration or improvement in cognitive functioning over time. The cut-off score in the screening for 1 cognitive disturbed domain was 27/28 with a sensitivity of 0.72. The cut-off score in the screening for at least 4 impaired domains and dementia were 26/27 and 23/24 with a sensitivity of 0.82 and 0.96, respectively. The results indicated that the MMSE has modest qualities in screening for mild cognitive disturbances and is adequate in screening for moderate cognitive deficits or dementia in stroke patients 1 month after stroke. Poor performance on the MMSE is predictive for cognitive impairment in the long term. However, it cannot be used to predict further cognitive deterioration or improvement over time

    Is implicit motor learning preserved after stroke? A systematic review with meta-analysis

    Get PDF
    © 2016 Kal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients' automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved poststroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts

    The derivation of effects threshold concentrations of lead for European freshwater ecosystems

    No full text
    The main objective of the present study was to derive ecologically relevant effect threshold concentrations of (dissolved) Pb for selected European Union (EU) freshwater rivers, using the 2008 EU Voluntary Risk Assessment Report as a starting point and more advanced methodologies than those used in the Voluntary Risk Assessment Report. This included 1) implementing more robust quality criteria for selecting chronic toxicity data; 2) the conversion of total to dissolved Pb concentrations using a combination of an empirical equation relating inorganic Pb solubility and geochemical speciation modeling to account for effects of dissolved organic matter; 3) the use of bioavailability models for chronic toxicity for species belonging to 3 different trophic levels; and 4) the use of robust methods for large data set handling (such as species sensitivity distribution [SSD] analysis). The authors used published bioavailability models for an algal species (Pseudokirchneriella subcapitata) and a daphnid (Ceriodaphnia dubia) and developed a new model for the fathead minnow (Pimephales promelas). The research has shown that these models are also useful for, and reasonably accurate in, predicting chronic toxicity to other species, including a snail, a rotifer, midge larvae, and an aquatic plant (read-across). A comprehensive chronic toxicity data set for Pb was compiled, comprising 159 individual high-quality toxicity data for 25 different species. By applying the total dissolved conversion and the bioavailability models, normalized toxicity values were obtained, which were then entered into a SSD analysis. Based on the parametric best-fitting SSDs, the authors calculated that ecological threshold concentrations of Pb protecting 95% of freshwater species for 7 selected European freshwater scenarios were between 6.3 μg dissolved Pb/L and 31.1 μg dissolved Pb/L

    Activity patterns of cochlear ganglion neurones in the starling

    Get PDF
    1. Spontaneous activity and responses to simple tonal stimuli were studied in cochlear ganglion neurones of the starling. 2. Both regular and irregular spontaneous activity were recorded (Figs. I to 5). Non-auditory cells have their origin in the macula lagenae. Mean spontaneous rate for auditory cells (all irregularly spiking) was 45 spikes s-1. 3. In half the units having characteristic frequencies (CFs) <1.5 kHz, time-interval histograms (TIHs) of spontaneous activity showed regularly-spaced peaks or 'preferred' intervals. The spacing of the peak intervals was, on average, 15% greater than the CF-period interval of the respective units (Fig. 11). 4. In TIH of lower-frequency cells without preferred intervals, the modal interval was also on average about 15% longer than the CF-period interval (Fig. 11). Apparently, the resting oscillation frequency of these cells lies below their CF. 5. Tuning curves (TCs) of neurones to short tone bursts show no systematic asymmetry as in mammals. Below CF 1 kHz, the low-frequency flanks of the TCs are, on average, steeper than the high-frequency flanks. Above CF 1 kHz, the reverse is true (Fig. 15). 6. The cochlear ganglion and nerve are tonotopically organized. Low-frequency fibres arise apically in the papilla basilaris and are found near non-auditory (lagenar) fibres (Figs. 2 and 19). 7. Discharge rates to short tones were monotonically related to sound presure level (Fig. 20). Saturation rates often exceeded 300 spikes s- 1. 8. 'On-off' responses and primary suppression of spontaneous activity were observed (Figs. 22 and 23). 9. A direct comparison of spontaneous activity and tuning-curve symmetry (Fig. 15b) revealed that, apart from quantative differences, fundamental qualitative differences exist between starling and guinea-pig primary afferents
    corecore