26 research outputs found
A phase II study of Epirubicin in oxaliplatin-resistant patients with metastatic colorectal cancer and <i>TOP2A</i> gene amplification
ᅟ: The overall purpose of this study is to provide proof of concept for introducing the anthracycline epirubicin as an effective, biomarker-guided treatment for metastatic colorectal cancer (mCRC) patients who are refractory to treatment with oxaliplatin-based chemotherapy and have TOP2A gene amplification in their tumor cells. BACKGROUND: Epirubicin is an anthracycline that targets DNA topoisomerase 2-α enzyme encoded by the TOP2A gene. It is used for treatment of several malignancies, but currently not in CRC. TOP2A gene amplifications predict improved efficacy of epirubicin in patients with breast cancer and thus could be an alternative option for patients with CRC and amplified TOP2A gene. We have previously analysed the frequency of TOP2A gene aberrations in CRC and found that 46.6 % of these tumors had TOP2A copy gain and 2.0 % had loss of TOP2A when compared to adjacent normal tissue. The TOP2A gene is located on chromosome 17 and when the TOP2A/CEN-17 ratio was applied to identify tumors with gene loss or amplifications, 10.5 % had a ratio ≥ 1.5 consistent with gene amplification and 2.6 % had a ratio ≤ 0.8 suggesting gene deletions. Based on these observations and the knowledge gained from treatment of breast cancer patients, we have initiated a prospective clinical, phase II protocol using epirubicin (90 mg/m2 iv q 3 weeks) in mCRC patients, who are refractory to treatment with oxaliplatin. METHODS/DESIGN: The study is an open label, single arm, phase II study, investigating the efficacy of epirubicin in patients with oxaliplatin refractory mCRC and with a cancer cell TOP2A/CEN-17 ratio ≥ 1.5. TOP2A gene amplification measured by fluorescence in situ hybridization. A total of 25 evaluable patients (15 + 10 in two steps) will be included (Simon’s two-stage minimax design). Every nine weeks, response is measured by computed tomography imaging and evaluated according to RECIST 1.1. The primary end-point of the study is progression-free survival. TRIAL REGISTRATION: Eudract no. 2013-001648-79
Mechanisms of topoisomerase I (<em>TOP1</em>) gene copy number increase in a stage III colorectal cancer patient cohort
BACKGROUND: Topoisomerase I (Top1) is the target of Top1 inhibitor chemotherapy. The TOP1 gene, located at 20q12-q13.1, is frequently detected at elevated copy numbers in colorectal cancer (CRC). The present study explores the mechanism, frequency and prognostic impact of TOP1 gene aberrations in stage III CRC and how these can be detected by fluorescent in situ hybridization (FISH). METHODS: Nine CRC cell line metaphase spreads were analyzed by FISH with a TOP1 probe in combination with a reference probe covering either the centromeric region of chromosome 20 (CEN-20) or chromosome 2 (CEN-2). Tissue sections from 154 chemonaive stage III CRC patients, previously studied with TOP1/CEN-20, were analyzed with TOP1/CEN-2. Relationships between biomarker status and overall survival (OS), time to recurrence (TTR) in CRC and time to local recurrence (LR; rectal cancer only) were determined. RESULTS: TOP1 aberrations were observed in four cell line metaphases. In all cell lines CEN-2 was found to reflect chromosomal ploidy levels and therefore the TOP1/CEN-2 probe combination was selected to identify TOP1 gene gains (TOP1/CEN-2≥1.5). One hundred and three patients (68.2%) had TOP1 gain, of which 15 patients (14.6%) harbored an amplification (TOP1/CEN-20≥2.0). TOP1 gene gain did not have any association with clinical endpoints, whereas TOP1 amplification showed a non-significant trend towards longer TTR (multivariate HR: 0.50, p = 0.08). Once amplified cases were segregated from other cases of gene gain, non-amplified gene increases (TOP1/CEN-2≥1.5 and TOP1/CEN-20<2.0) showed a trend towards shorter TTR (univariate HR: 1.57, p = 0.07). CONCLUSIONS: TOP1 gene copy number increase occurs frequently in stage III CRC in a mechanism that often includes CEN-20. Using CEN-2 as a measurement for tumor ploidy levels, we were able to discriminate between different mechanisms of gene gain, which appeared to differ in prognostic impact. TOP1 FISH guidelines have been updated
Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity
Objective: Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity. Methods: Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug–drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed. Results: For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids. Conclusion: Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development
DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer
Prospective-retrospective assessment of the TOP1 gene copy number and TOP1 mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer.status: publishe
Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: a novel strategy in drug development
Cancer is a leading cause of mortality worldwide and matters are only set to worsen as its incidence continues to rise. Traditional approaches to combat cancer include improved prevention, early diagnosis, optimized surgery, development of novel drugs and honing regimens of existing anti-cancer drugs. Although discovery and development of novel and effective anti-cancer drugs is a major research area, it is well known that oncology drug development is a lengthy process, extremely costly and with high attrition rates. Furthermore, those drugs that do make it through the drug development mill are often quite expensive, laden with severe side-effects and, unfortunately, to date, have only demonstrated minimal increases in overall survival. Therefore, a strong interest has emerged to identify approved non-cancer drugs that possess anti-cancer activity, thus shortcutting the development process. This research strategy is commonly known as drug repurposing or drug repositioning and provides a faster path to the clinics. We have developed and implemented a modification of the standard drug repurposing strategy that we review here; rather than investigating target-promiscuous non-cancer drugs for possible anti-cancer activity, we focus on the discovery of novel cancer indications for already approved chemotherapeutic anti-cancer drugs. Clinical implementation of this strategy is normally commenced at clinical phase II trials and includes pre-treated patients. As the response rates to any non-standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I inhibitors and topoisomerase I as a potential predictive biomarker as case in point