60 research outputs found

    Tarsometatarsal joint communication during fluoroscopy-guided therapeutic joint injections and relationship with patient age and degree of osteoarthritis.

    Get PDF
    OBJECTIVE: Although the tarsometatarsal joints are separated into three distinct synovial compartments, communications between adjacent compartments are often noted during image-guided injections. This study aims to determine whether abnormal inter-compartment tarsometatarsal joint communication is associated with patient age or degree of tarsometatarsal osteoarthritis. MATERIALS AND METHODS: One hundred forty tarsometatarsal injections were retrospectively reviewed by two radiologists. Extent of inter-compartment communication and degree of osteoarthritis were independently scored. Univariate and multivariable analyses were performed to assess whether the presence of and number of abnormal joint communications were related to age and degree of osteoarthritis. RESULTS: Forty out of 140 tarsometatarsal joints showed abnormal communication with a separate synovial compartment, and 3 of the 40 showed abnormal communication with two separate compartments. On univariate analysis, higher grade osteoarthritis (p \u3c 0.001) and older age (p = 0.014) were associated with an increased likelihood of abnormal inter-compartment tarsometatarsal communication and a greater number of these abnormal communications. On multivariate analysis, the degree of osteoarthritis remained a significant predictor of the presence of (p \u3c 0.001) and number of (p \u3c 0.001) abnormal communications, while the association of age was not statistically significant. There was significant correlation between age and degree of osteoarthritis (p \u3c 0.001). CONCLUSION: Higher grade osteoarthritis increases the likelihood of abnormal inter-compartment tarsometatarsal joint communication and is associated with a greater number of abnormal communications. Diagnostic injection to localize a symptomatic tarsometatarsal joint may be less reliable in the setting of advanced osteoarthritis

    Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias.

    Get PDF
    PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of \u3c1 x\u3e10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers
    corecore