18 research outputs found

    A Mutant Ahr Allele Protects the Embryonic Kidney from Hydrocarbon-Induced Deficits in Fetal Programming

    Get PDF
    Background: The use of experimental model systems has expedited the elucidation of pathogenetic mechanisms of renal developmental disease in humans and the identification of genes that orchestrate developmental programming during nephrogenesis

    Role of the kidney in the prenatal and early postnatal programming of hypertension

    No full text
    Epidemiologic studies from several different populations have demonstrated that prenatal insults, which adversely affect fetal growth, result in an increased incidence of hypertension when the offspring reaches adulthood. It is now becoming evident that low-birth-weight infants are also at increased risk for chronic kidney disease. To determine how prenatal insults result in hypertension and chronic kidney disease, investigators have used animal models that mimic the adverse events that occur in pregnant women, such as dietary protein or total caloric deprivation, uteroplacental insufficiency, and prenatal administration of glucocorticoids. This review examines the role of the kidney in generating and maintaining an increase in blood pressure in these animal models. This review also discusses how early postnatal adverse events may have repercussions in later life. Causes for the increase in blood pressure by perinatal insults are likely multifactorial and involve a reduction in nephron number, dysregulation of the systemic and intrarenal renin-angiotensin system, increased renal sympathetic nerve activity, and increased tubular sodium transport. Understanding the mechanism for the increase in blood pressure and renal injury resulting from prenatal insults may lead to therapies that prevent hypertension and the development of chronic kidney and cardiovascular disease

    Nutritional programming of blood pressure and renal morphology

    No full text
    A range of epidemiological evidence from several diverse populations, supports the hypothesis that risk of essential hypertension, coronary heart disease and non-insulin dependent diabetes is, in part, programmed by intrauterine nutritional status. Animal models developed to investigate the mechanisms that are responsible for such programming are becoming more important as challenges to the epidemiological data become more robust. With strong evidence from animal studies it is now widely accepted that maternal nutritional status in pregnancy is a major programming influence upon the fetus. This paper considers the hypothesis that renal structure and function are determined by prenatal nutrition and that this is a key mechanism in the programming of hypertension. The feeding of low protein diets or other insults in pregnancy that have an impact upon the development of cardiovascular functions, also appears to impact upon nephron number. In the sheep nephron number is related to weight at birth following nutrient restriction, and in the rat low protein diets reduce nephron number by approximately 30%. However, it is possible that hypertension and reduced renal reserve merely coincide and are not causally associated. A study of rats fed low protein diets supplemented with additional nitrogen sources found that whilst only glycine could reverse the hypertensive effects of low protein diets, all supplements could normalise nephron number. The evidence thus suggests that prenatal undernutrition may programme renal structure in later life, but that renal programming is not one of the primary mechanisms leading to hypertensio
    corecore