7 research outputs found

    CMOS ring oscillator delay cell performance: a comparative study

    Get PDF
    A common voltage-controlled oscillator (VCO) architecture used in the phase locked loop (PLL) is the ring oscillator (RO). RO consist of number of inverters cascaded together as the input of the first stage connected to the output of the last stage. It is important to design the RO to be work at desired frequency depend on application with low power consumption. This paper presents a review the performance evaluation of different delay cell topologies the implemented in the ring oscillator. The various topologies analyzed includes current starved delay cell, differential delay cell and current follower cell. Performance evaluation includes frequency range, frequency stability, phase noise and power consumption had been reviewed and comparison of different topologies has been discussed. It is observed that starved current delay cell have lower power consumption and the different of the frequency range is small as compared to other type of delay cell

    Sodium Hydroxide Treatment of Waste Rubber Crumb and Its Effects on Properties of Unsaturated Polyester Composites

    No full text
    This study investigated the optimum NaOH concentration treatment for rubber crumbs that improves adhesion between the polymer matrix and rubber filler in rubber polyester composites. The composite was prepared by mixing rubber crumbs from waste rubber gloves with unsaturated polyester matrix. Rubber crumbs were cryogenically ground from waste gloves and treated with 1%, 4%, 7%, and 10% NaOH (by volume). Treatment with 7% and 10% NaOH provides better wettability and hydrophilicity for rubber as it decreases the surface contact angle by approximately 27%. Higher concentration of NaOH intensively etched the rubber and made the surface rougher with more microcracks, providing a larger surface area for greater polyester coverage and holding the rubber firmly. It also induced more functional groups that increased the rubber surface energy and removed the hydrophobic layer on the rubber. These factors strengthened the interfacial rubber–polyester adhesion, as shown by the SEM micrograph of the tensile fracture which the rubber crumbs adhere well to the polyester matrix. The FTIR analysis of rubber treated with higher NaOH concentration showed a higher peak intensity, which demonstrated more polar groups were generated on the rubber surface. More polar groups created further connections to the polar groups in the polyester matrix, thereby enhancing adhesion between the rubber filler and the matrix

    Effect of Wood Dust Fibre Treatments Reinforcement on the Properties of Recycled Polypropylene Composite (r-WoPPC) Filament for Fused Deposition Modelling (FDM)

    No full text
    The efficacy of wood dust fibre treatment on the property of wood dust reinforced recycled polypropylene composite (r-WoPPC) filament was investigated. The wood dust fibre was treated using alkali, silane, and NaOH-silane. The treated wood fibre was incorporated with r-PP using a twin-screw extruder to produce filament. The silane treatment on wood dust fibre enhances interfacial bonding between wood fibre and recycled PP; hence, a filament has the highest wire pull strength, which is 35.2% higher compared to untreated and alkaline-treated wood dust filament. It is because silanol in silane forms a siloxane bond that acts as a coupling agent that improves interfacial bonding between wood dust fibre and recycled PP. The SEM micrograph of the fracture structure reveals that treated silane has strong interfacial bonding between wood dust fibre and recycled PP, having minimal void, gap, and good fibre adhesion. The water absorption test results indicate that filament with treated wood dust absorbs less water than filament with untreated wood because the treatment minimizes the gap between wood fibres and recycled PP. The FTIR analysis identified the presence of silane on the wood dust surface for silane-treated wood dust. The DSC studies suggest that the temperature range 167–170 °C be used in the extrusion machine to produce r-WoPPC filament. As a result, r-WoPPc filaments containing silane-treated wood dust have better mechanical properties and have a greater potential for usage in FDM applications

    Experimental Study Of Welded Joints On Steel Plate Cold-Rolled Sheet Metal Using Different Electrode Tips

    No full text
    Resistance spot welding is commonly used in the automotive industry,because it has advantages such as high speed,high-production assembly lines and suitability in automation.Welded joints are exposed to varying loads and pressure,as such,these conditions cause the joints to rupture.The objective of this paper is to study the different properties of welded joints in Steel Plate Cold-Rolled Coils,SPCC sheet metal by using different electrode geometries.The material used in this study was SPCC and selected welding tips:dome nose and flat nose as they are widely used in industrial applications.The findings indicated that weld nuggets of SPCC using the dome nose welding tip showed a value nearest to the theoretical value based on the America Welding Society, AWS's formula.The results for tensile testing were in accordance with weld nugget size,and the dome nose welding tip was 10% stronger than the flat nose.The difference in electrode geometries showed a significant impact on welded joint properties of SPCC metal for automotive applications
    corecore