794 research outputs found

    A large-deviations analysis of the GI/GI/1 SRPT queue

    Get PDF
    We consider a GI/GI/1 queue with the shortest remaining processing time discipline (SRPT) and light-tailed service times. Our interest is focused on the tail behavior of the sojourn-time distribution. We obtain a general expression for its large-deviations decay rate. The value of this decay rate critically depends on whether there is mass in the endpoint of the service-time distribution or not. An auxiliary priority queue, for which we obtain some new results, plays an important role in our analysis. We apply our SRPT-results to compare SRPT with FIFO from a large-deviations point of view.Comment: 22 page

    The construction of good lattice rules and polynomial lattice rules

    Full text link
    A comprehensive overview of lattice rules and polynomial lattice rules is given for function spaces based on p\ell_p semi-norms. Good lattice rules and polynomial lattice rules are defined as those obtaining worst-case errors bounded by the optimal rate of convergence for the function space. The focus is on algebraic rates of convergence O(Nα+ϵ)O(N^{-\alpha+\epsilon}) for α1\alpha \ge 1 and any ϵ>0\epsilon > 0, where α\alpha is the decay of a series representation of the integrand function. The dependence of the implied constant on the dimension can be controlled by weights which determine the influence of the different dimensions. Different types of weights are discussed. The construction of good lattice rules, and polynomial lattice rules, can be done using the same method for all 1<p1 < p \le \infty; but the case p=1p=1 is special from the construction point of view. For 1<p1 < p \le \infty the component-by-component construction and its fast algorithm for different weighted function spaces is then discussed

    Successive Coordinate Search and Component-by-Component Construction of Rank-1 Lattice Rules

    Full text link
    The (fast) component-by-component (CBC) algorithm is an efficient tool for the construction of generating vectors for quasi-Monte Carlo rank-1 lattice rules in weighted reproducing kernel Hilbert spaces. We consider product weights, which assigns a weight to each dimension. These weights encode the effect a certain variable (or a group of variables by the product of the individual weights) has. Smaller weights indicate less importance. Kuo (2003) proved that the CBC algorithm achieves the optimal rate of convergence in the respective function spaces, but this does not imply the algorithm will find the generating vector with the smallest worst-case error. In fact it does not. We investigate a generalization of the component-by-component construction that allows for a general successive coordinate search (SCS), based on an initial generating vector, and with the aim of getting closer to the smallest worst-case error. The proposed method admits the same type of worst-case error bounds as the CBC algorithm, independent of the choice of the initial vector. Under the same summability conditions on the weights as in [Kuo,2003] the error bound of the algorithm can be made independent of the dimension dd and we achieve the same optimal order of convergence for the function spaces from [Kuo,2003]. Moreover, a fast version of our method, based on the fast CBC algorithm by Nuyens and Cools, is available, reducing the computational cost of the algorithm to O(dnlog(n))O(d \, n \log(n)) operations, where nn denotes the number of function evaluations. Numerical experiments seeded by a Korobov-type generating vector show that the new SCS algorithm will find better choices than the CBC algorithm and the effect is better when the weights decay slower.Comment: 13 pages, 1 figure, MCQMC2016 conference (Stanford
    corecore