2,114 research outputs found

    Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase

    Get PDF
    ERK5 is a mitogen-activated protein (MAP) kinase regulated in human cells by diverse mitogens and stresses but also suspected of mediating the effects of a number of oncogenes. Its expression in the slt2Delta Saccharomyces cerevisiae mutant rescued several of the phenotypes caused by the lack of Slt2p (Mpk1p) cell integrity MAP kinase. ERK5 is able to provide this cell integrity MAP kinase function in yeast, as it is activated by the cell integrity signaling cascade that normally activates Slt2p and, in its active form, able to stimulate at least one key Slt2p target (Rlm1p, the major transcriptional regulator of cell wall genes). In vitro ERK5 kinase activity was abolished by Hsp90 inhibition. ERK5 activity in vivo was also lost in a strain that expresses a mutant Hsp90 chaperone. Therefore, human ERK5 expressed in yeast is an Hsp90 client, despite the widely held belief that the protein kinases of the MAP kinase class are non-Hsp90-dependent activities. Two-hybrid and protein binding studies revealed that strong association of Hsp90 with ERK5 requires the dual phosphorylation of the TEY motif in the MAP kinase activation loop. These phosphorylations, at positions adjacent to the Hsp90-binding surface recently identified for a number of protein kinases, may cause a localized rearrangement of this MAP kinase region that leads to creation of the Hsp90-binding surface. Complementation of the slt2Delta yeast defect by ERK5 expression establishes a new tool with which to screen for novel agonists and antagonists of ERK5 signaling as well as for isolating mutant forms of ERK5

    Large-Scale Image Processing with the ROTSE Pipeline for Follow-Up of Gravitational Wave Events

    Full text link
    Electromagnetic (EM) observations of gravitational-wave (GW) sources would bring unique insights into a source which are not available from either channel alone. However EM follow-up of GW events presents new challenges. GW events will have large sky error regions, on the order of 10-100 square degrees, which can be made up of many disjoint patches. When searching such large areas there is potential contamination by EM transients unrelated to the GW event. Furthermore, the characteristics of possible EM counterparts to GW events are also uncertain. It is therefore desirable to be able to assess the statistical significance of a candidate EM counterpart, which can only be done by performing background studies of large data sets. Current image processing pipelines such as that used by ROTSE are not usually optimised for large-scale processing. We have automated the ROTSE image analysis, and supplemented it with a post-processing unit for candidate validation and classification. We also propose a simple ad hoc statistic for ranking candidates as more likely to be associated with the GW trigger. We demonstrate the performance of the automated pipeline and ranking statistic using archival ROTSE data. EM candidates from a randomly selected set of images are compared to a background estimated from the analysis of 102 additional sets of archival images. The pipeline's detection efficiency is computed empirically by re-analysis of the images after adding simulated optical transients that follow typical light curves for gamma-ray burst afterglows and kilonovae. We show that the automated pipeline rejects most background events and is sensitive to simulated transients to limiting magnitudes consistent with the limiting magnitude of the images

    Statistical Communication Theory

    Get PDF
    Contains research objectives and reports on three research projects

    Patterns of Mesophotic Benthic Community Structure on Banks Off vs Inside the Continental Shelf Edge, Gulf of Mexico

    Get PDF
    Information on the biodiversity and geographic patterns of mesophotic, sessile, epibenthic communities on banks around and at the edge of the continental shelf, northern Gulf of Mexico, has been limited. These communities vary in their environments and are prone to disturbance from Outer Continental Shelf oil- and gas-related activities and fishing (trawling and long-lining). We surveyed these communities on the flanks of 13 banks to determine species richness, species composition, similarities between benthic communities, and geographic patterns in community structure. We sampled to ≤ 181 m in depth via a remotely operated vehicle using a vertically mounted digital camera bearing two lasers for scale and a flash (generally 10 drop-sites/bank, 5 transects/drop-site, and ≤11 photos/transect). Data analysis via PATN revealed three main Bank Groups: the on-shelf group containing 29 Fathom and Sonnier Banks; an anomalous bank—Geyer Bank; and the shelf edge group—Horseshoe, 28 Fathom, Bright, Alderdice, Bouma, Rankin, Rezak, Elvers, McGrail, and Sidner Banks. Most species-rich banks (Bank Group 3) occurred at the shelf edge. Two of the species-poor banks (Bank Group 1) occurred further north, inside the shelf. Geyer Bank (Bank Group 2) occurred at the shelf edge but was anomalously species-poor. Box-and-whisker analyses identified four Species Groups driving the Bank Groupings. Species Group 4 (the Elatopathes abientina/Nicella sp. group) was the largest (also containing Peysonellia sp.), primarily defining Bank Group 3. Species Groups 2 (the Antipathes sp./Gorgonian G04 group) and 3 (low species abundances) were also associated with Bank Group 3. Species Group 4 (the Elatopathes abientina/Nicella sp. group) was a major contributor to Bank Group 2 (Geyer Bank). Species Group 2 (the Antipathes sp./Gorgonian G04 group) was the primary constituent of the on-shelf Bank Group 1, also characterized by low species richness. Most species had a comparative abundance of ≤20%. The high species richness and affinities exhibited by Bank Group 3 are likely due to continual exposure to warm, low-turbidity Caribbean water at the shelf edge. Banks inside the shelf likely vary from the others as a result of exposure to cooler winter temperatures and higher turbidity due to wind-forced inshore currents. The reasons for the unique community structure on Geyer Bank are as yet unknown. Shelf-edge banks tend to be more species rich than on-shelf banks
    corecore