18 research outputs found

    Phosphatidylserine exposure in Fas type I cells is mitochondria-dependent

    Get PDF
    AbstractPrevious studies have demonstrated that Fas-triggered activation of effector caspases and subsequent nuclear apoptosis either is mitochondria-independent (type I cells) or relies on mitochondrial amplification of the initial stimulus (type II cells). We show herein that Bcl-2 overexpression in a prototypic type I cell line (SKW6.4) promotes mitochondrial generation of ATP and blocks Fas-triggered plasma membrane externalization of phosphatidylserine (PS). Moreover, overexpression of Bcl-2 attenuates macrophage engulfment of Fas-triggered cells. Fas-mediated DNA fragmentation, on the other hand, remains unaffected in SKW6.4-bcl-2 cells. These studies thus demonstrate that PS externalization and clearance of cell corpses are mitochondria-dependent events, and show that these events can be dissociated from other features of the apoptotic program, in Fas type I cells

    Inhibition of the anaphase-promoting complex by the Xnf7 ubiquitin ligase

    Get PDF
    Degradation of specific protein substrates by the anaphase-promoting complex/cyclosome (APC) is critical for mitotic exit. We have identified the protein Xenopus nuclear factor 7 (Xnf7) as a novel APC inhibitor able to regulate the timing of exit from mitosis. Immunodepletion of Xnf7 from Xenopus laevis egg extracts accelerated the degradation of APC substrates cyclin B1, cyclin B2, and securin upon release from cytostatic factor arrest, whereas excess Xnf7 inhibited APC activity. Interestingly, Xnf7 exhibited intrinsic ubiquitin ligase activity, and this activity was required for APC inhibition. Unlike other reported APC inhibitors, Xnf7 did not associate with Cdc20, but rather bound directly to core subunits of the APC. Furthermore, Xnf7 was required for spindle assembly checkpoint function in egg extracts. These data suggest that Xnf7 is an APC inhibitor able to link spindle status to the APC through direct association with APC core components

    Metabolic activation of CaMKII by coenzyme A

    Get PDF
    Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability

    Mcm10 and And-1/CTF4 recruit DNA polymerase Ī± to chromatin for initiation of DNA replication

    Get PDF
    The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primaseā€“polymerase complex, DNA polymerase Ī± (pol Ī±), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol Ī±. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol Ī±, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10ā€“And-1 interaction interferes with the loading of And-1 and of pol Ī±, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol Ī±ā€“primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion

    Metabolic Regulation of Oocyte Cell Death through the CaMKII-Mediated Phosphorylation of Caspase-2

    Get PDF
    SummaryVertebrate female reproduction is limited by the oocyte stockpiles acquired during embryonic development. These are gradually depleted over the organismā€™s lifetime through the process of apoptosis. The timer that triggers this cell death is yet to be identified. We used the Xenopus egg/oocyte system to examine the hypothesis that nutrient stores can regulate oocyte viability. We show that pentose-phosphate-pathway generation of NADPH is critical for oocyte survival and that the target of this regulation is caspase-2, previously shown to be required for oocyte death in mice. Pentose-phosphate-pathway-mediated inhibition of cell death was due to the inhibitory phosphorylation of caspase-2 by calcium/calmodulin-dependent protein kinase II (CaMKII). These data suggest that exhaustion of oocyte nutrients, resulting in an inability to generate NADPH, may contribute to ooctye apoptosis. These data also provide unexpected links between oocyte metabolism, CaMKII, and caspase-2
    corecore