10 research outputs found

    Use of Supplemented or Human Material to Simulate PD Behavior of Antibiotics at the Target Site In Vitro

    No full text
    In antimicrobial drug development, in vitro antibiotic susceptibility testing is conducted in standard growth media, such as Mueller–Hinton broth (MHB). These growth media provide optimal bacterial growth, but do not consider certain host factors that would be necessary to mimic the in vivo bacterial environment in the human body. The present review aimed to include relevant data published between 1986 and 2019. A database search (PubMed) was done with text keywords, such as “MIC” (minimal inhibitory concentration), “TKC” (time kill curve), “blood”, “body fluid”, “PD” (pharmacodynamic), and “in vitro”, and 53 papers were ultimately selected. Additionally, a literature search for physiologic characteristics of body fluids was conducted. This review gives an excerpt of the complexity of human compartments with their physiologic composition. Furthermore, we present an update of currently available in vitro models operated either with adapted growth media or body fluids themselves. Moreover, the feasibility of testing the activity of antimicrobials in such settings is discussed, and pro and cons for standard practice methods are given. The impact on bacterial killing varies between individual adapted microbiological media, as well as direct pharmacodynamic simulations in body fluids, between bacterial strains, antimicrobial agents, and the compositions of the adjuvants or the biological fluid itself

    Comparison of Antimycotic Activity of Originator and Generics of Voriconazole and Anidulafungin against Clinical Isolates of Candida albicans and Candida glabrata

    No full text
    Background: Concerns have been expressed about the interchangeability of innovator and generic antifungals in their activity and chemical stability. Materials/methods: The activity of two different antimycotics was tested, each with one originator and two generics. For voriconazole, the originator VFEND® (Pfizer) and the generics (Ratiopharm and Stada) were used for susceptibility testing (21 clinical isolates of Candida albicans (C. albicans); ATCC-90028 C. albicans) in RPMI growth media in compliance with the EUCAST criteria. Likewise, for anidulafungin, the originator ECALTA® (Pfizer) and the generics (Stada and Pharmore) were used for testing (20 clinical isolates of Candida glabrata (C. glabrata); ATCC-22019 Candida parapsilosis (C. parapsilosis)). Time Kill Curves (TKC) with concentrations above and below the respective MIC were performed for one strain for each antifungal. Stability testing of the antimycotics stored at 4 °C and at room temperature over 24 h was done, and samples were subsequently analyzed with HPLC. Results: MIC results showed no significant difference in activity of generic and innovator antimycotic in all settings, which was also confirmed by TKC. Stability testing revealed no differences between originator and generic drugs. Conclusions: The present study demonstrates the interchangeability of generic and originator antimycotic in-vitro, potentially leading to broader public acceptance for generic antimycotics

    Low pH reduces the activity of ceftolozane/tazobactam in human urine, but confirms current breakpoints for urinary tract infections

    No full text
    BACKGROUND: Acidic pH has been shown to impact the antibiotic activity of non-β-lactams in urine. OBJECTIVES: To investigate the in vitro activity of ceftolozane/tazobactam compared with meropenem at different pH settings in urine. METHODS: We determined the MICs for 30 clinical isolates of Escherichia coli, 25 clinical isolates of Klebsiella pneumoniae and 24 clinical isolates of Proteus mirabilis in pooled human urine and standard growth medium at pH 5 and 7. Time-kill curves were produced for one representative clinical isolate of tested bacterial strains in urine at pH 5, 6 and 7 for both antibiotics at concentrations above and below the MIC. HPLC analysis of the stability of ceftolozane/tazobactam and meropenem was performed at different pH values. RESULTS: The median MICs of both antibiotics were up to 8-fold higher at pH 5 than at pH 7. Bacterial growth of E. coli was not impacted by pH, while for K. pneumoniae and P. mirabilis low pH slightly reduced growth. Compared with pH 7, pH 5 resulted in a significant decrease in antibiotic activity with a delta of up to 3 log10 bacterial counts after 24 h. Impact of acidic pH was lowest for P. mirabilis; however, this strain metabolically increased the pH during experiments. Stability was not impacted by low pH. CONCLUSIONS: Acidic pH had a significant negative impact on the activity of ceftolozane/tazobactam and meropenem in urine. Considering concentrations achieved in urine, our results confirm existing breakpoints and do not advocate increasing ceftolozane/tazobactam breakpoints for urinary tract infections

    Antimicrobial activity and pathogen mutation prevention of originator and generics of cefepime, linezolid and piperacillin/tazobactam against clinical isolates of Staphylococcus aureus

    No full text
    ABSTRACT: Objectives: Although generic medicinal products are required to have the same qualitative and quantitative composition of the active substance as their reference originator product, patients and health care professionals express concerns about their interchangeability and safety. Therefore, the present study investigated the antimicrobial activity and pathogen mutation prevention of original and generic cefepime, linezolid and piperacillin/tazobactam against Staphylococcus aureus. Methods: Two generic formulations of cefepime, linezolid and piperacillin/tazobactam were tested against their respective originator products. Susceptibility testing was performed with twenty-one clinical isolates of S. aureus and ATCC-29213 using broth microdilution. Time kill curves (TKC) were performed with ATCC-29213 at drug concentrations above and below the respective minimum inhibitory concentrations (MIC). Mutation prevention concentration was determined for each drug formulation against ATCC-29213. All experiments were performed in triplicate. Mutant colonies from mutation prevention concentration (MPC) experiments were genotypically tested by sequence analysis. Results: MIC ratios between contiguous originator and generic drugs were similar for each isolate. No visual differences were observed in TKCs between originator and generic substances. The MPC did not differ between different formulations of the same substance. Although sequence analysis of mutant colonies revealed genomic differences compared with the original ATCC-29213, no differences in mutation frequencies were observed between clinical isolates and ATCC-29213 treated with originator or generic substances. Conclusions: Similar antimicrobial activity and pathogen mutation prevention was observed between contiguous substances. These results support the interchangeability of generic and originator drug formulations with the same active ingredient

    Comparison of Antimycotic Activity of Originator and Generics of Voriconazole and Anidulafungin against Clinical Isolates of <i>Candida albicans</i> and <i>Candida glabrata</i>

    No full text
    Background: Concerns have been expressed about the interchangeability of innovator and generic antifungals in their activity and chemical stability. Materials/methods: The activity of two different antimycotics was tested, each with one originator and two generics. For voriconazole, the originator VFEND® (Pfizer) and the generics (Ratiopharm and Stada) were used for susceptibility testing (21 clinical isolates of Candida albicans (C. albicans); ATCC-90028 C. albicans) in RPMI growth media in compliance with the EUCAST criteria. Likewise, for anidulafungin, the originator ECALTA® (Pfizer) and the generics (Stada and Pharmore) were used for testing (20 clinical isolates of Candida glabrata (C. glabrata); ATCC-22019 Candida parapsilosis (C. parapsilosis)). Time Kill Curves (TKC) with concentrations above and below the respective MIC were performed for one strain for each antifungal. Stability testing of the antimycotics stored at 4 °C and at room temperature over 24 h was done, and samples were subsequently analyzed with HPLC. Results: MIC results showed no significant difference in activity of generic and innovator antimycotic in all settings, which was also confirmed by TKC. Stability testing revealed no differences between originator and generic drugs. Conclusions: The present study demonstrates the interchangeability of generic and originator antimycotic in-vitro, potentially leading to broader public acceptance for generic antimycotics

    European Journal of Clinical Microbiology & Infectious Diseases / Impact of erythrocytes on bacterial growth and antimicrobial activity of selected antibiotics

    No full text
    It has been shown that protein binding, temperature, and pH influence in vitro pharmacodynamic (PD) models. The fact that corpuscular blood compounds might also have an important impact is something which has, until now, often been neglected. We investigated if the addition of human erythrocytes to standard growth media (Mueller Hinton Broth, MHBII) has an influence on bacterial growth behavior and on antibiotic efficacy. We did this by using bacterial growth assays and time kill curves (TKC) of selected strains (Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213, and Pseudomonas aeruginosa ATCC27853) over 24 h. The final concentration of erythrocytes was set to match the physiological concentrations in the blood of a healthy human, i.e., 310 6 cells/l in MHBII. Meropenem, ciprofloxacin, and tigecycline were tested with concentrations several-fold above and below the minimal inhibitory concentration (MIC). Moreover, HPLC analysis of antibiotic stability and distribution in erythrocytes was performed. Meropenem, ciprofloxacin, and tigecycline showed the greatest decline in activity against E. coli when erythrocytes were present. A mean difference in log10 bacterial killing between pure MHBII and 50%-Ery of 3.83, 1.33, and 2.42 was found for ciprofloxacin, meropenem, and tigecycline, respectively. In the case of ciprofloxacin, HPLC analysis revealed that less extracellular antibiotic is available in the presence of erythrocytes. We have demonstrated that erythrocytes do influence antimicrobial activity and that this might have an impact on the extrapolation of in vitro activity testing to in vivo efficacy in patients.(VLID)365519

    Comparison of non-invasive Staphylococcus aureus sampling methods on lesional skin in patients with atopic dermatitis

    No full text
    There is evidence that Staphylococcus aureus colonisation is linked to severity of atopic dermatitis. As no gold standard for S. aureus sampling on atopic dermatitis skin lesions exists, this study compared three commonly used methods. In addition, effectiveness of standard skin disinfection to remove S. aureus colonisation from these inflamed skin lesions was investigated. In 30 atopic dermatitis patients, three different S. aureus sampling methods, i.e. detergent scrubbing, moist swabbing and tape stripping, were performed on naïve and disinfected skin lesions. Two different S. aureus selective media, mannitol salt agar and chromID agar, were used for bacterial growing. Quantifying the S. aureus load varied significantly between the different sampling methods on naïve skin lesions ranging from mean 51 to 1.5 × 10(4) CFU/cm(2) (p < 0.001). The qualitative detection on naïve skin was highest with the two detergent-based techniques (86% each), while for tape stripping, this value was 67% (all on chromID agar). In comparison, mannitol salt agar was less sensitive (p < 0.001). The disinfection of the skin lesions led to a significant reduction of the S. aureus load (p < 0.05) but no complete eradication in the case of previously positive swab. The obtained data highlight the importance of the selected sampling method and consecutive S. aureus selection agar plates to implement further clinical studies for the effectiveness of topical anti-staphylococcal antibiotics. Other disinfection regimes should be considered in atopic dermatitis patients when complete de-colonisation of certain skin areas is required, e.g. for surgical procedures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10096-021-04365-5

    Early Bacterial Coinfections in Patients Admitted to the ICU With COVID-19 or Influenza: A Retrospective Cohort Study

    No full text
    IMPORTANCE:. Previous findings suggest that bacterial coinfections are less common in ICU patients with COVID-19 than with influenza, but evidence is limited. OBJECTIVES:. This study aimed to compare the rate of early bacterial coinfections in ICU patients with COVID-19 or influenza. DESIGN, SETTING AND PARTICIPANTS:. Retrospective propensity score matched cohort study. We included patients admitted to ICUs of a single academic center with COVID-19 or influenza (January 2015 to April 2022). MAIN OUTCOMES AND MEASURES:. The primary outcome was early bacterial coinfection (i.e., positive blood or respiratory culture within 2 d of ICU admission) in the propensity score matched cohort. Key secondary outcomes included frequency of early microbiological testing, antibiotic use, and 30-day all-cause mortality. RESULTS:. Out of 289 patients with COVID-19 and 39 patients with influenza, 117 (n = 78 vs 39) were included in the matched analysis. In the matched cohort, the rate of early bacterial coinfections was similar between COVID-19 and influenza (18/78 [23%] vs 8/39 [21%]; odds ratio, 1.16; 95% CI, 0.42–3.45; p = 0.82). The frequency of early microbiological testing and antibiotic use was similar between the two groups. Within the overall COVID-19 group, early bacterial coinfections were associated with a statistically significant increase in 30-day all-cause mortality (21/68 [30.9%] vs 40/221 [18.1%]; hazard ratio, 1.84; 95% CI, 1.01–3.32). CONCLUSIONS AND RELEVANCE:. Our data suggest similar rates of early bacterial coinfections in ICU patients with COVID-19 and influenza. In addition, early bacterial coinfections were significantly associated with an increased 30-day mortality in patients with COVID-19

    Single-dose pharmacokinetics of temocillin in plasma and soft tissues of healthy volunteers after intravenous and subcutaneous administration: a randomized crossover microdialysis trial

    No full text
    Background: The antibiotic temocillin has recently been rediscovered as a promising therapeutic option against MDR Gram-negative bacteria. However, some aspects of the pharmacokinetic (PK) profile of the drug are still to be elucidated: subcutaneous administration of temocillin might be of interest as an alternative to the intravenous route in selected patients. Similarly, information on the penetration of temocillin into human soft tissues is lacking. Objectives: To investigate the feasibility and plasma PK of subcutaneous dosing as well as soft tissue PK of temocillin after intravenous administration to healthy volunteers. Methods: Eight healthy volunteers received 2 g of temocillin both as intravenous and subcutaneous infusion in a randomized two-period crossover study. Concentration-time profiles of total temocillin in plasma (after both routes) and of unbound temocillin in plasma, muscle and subcutis (only after intravenous dosing) were determined up to 12 h post-dose. Results: Subcutaneous dosing caused some infusion site discomfort but resulted in sustained drug concentrations over time with only slightly decreased overall exposure compared with intravenous dosing. Plasma protein binding of temocillin showed concentration-dependent behaviour and was higher than previously reported. Still, unbound drug concentrations in muscle and subcutis determined by microdialysis markedly exceeded those in plasma, suggesting good tissue penetration of temocillin. Conclusions: The subcutaneous administration of temocillin is a valid and feasible alternative to intravenous dosing. With the description of plasma protein binding and soft tissue PK of temocillin in healthy volunteers, this study provides important information that adds to the ongoing characterization of the PK profile of temocillin and might serve as input for PK/PD consideration
    corecore