4 research outputs found

    In Vitro Approbation of Microbial Preparations to Shield Fruit Crops from Fire Blight: Physio-Biochemical Parameters

    No full text
    The need for the increasing geographical spread of fire blight (FB) affecting fruit crops to be addressed led to large-scale chemicalization of the environmental matrices and reduction of plant productivity. The current study aimed to assess the effects of novel biopreparations at different exposure durations on photosynthetic pigment content and antioxidant enzyme activity in leaves of apple and pear varieties with varying levels of resistance to FB. Biopreparations were formulated from a cultural broth containing Lacticaseibacillus paracasei M12 or Bacillus amyloliquefaciens MB40 isolated from apple trees’ phyllosphere. Aseptic leaves from blight-resistant (endemic Malus sieversii cv. KG10), moderately resistant (Pyrus pyraster cv. Wild), and susceptible (endangered Malus domestica cv. Aport and Pyrus communis cv. Shygys) varieties were employed. The impact of biopreparations on fruit crop antioxidant systems and photosynthetic apparatuses was investigated in vitro. Study results indicated that FB-resistant varieties exhibit enhanced adaptability and oxidative stress resistance compared to susceptible ones. Plant response to biopreparations varied based on the plant’s initial FB sensitivity and exposure duration. Indeed, biopreparations improved the adaptive response of the assimilation apparatus, protein synthesis, and catalase and superoxide dismutase activity in susceptible varieties, suggesting that biopreparations have the potential for future commercialization to manage FB in fruit crops

    Human cytokines activate JAK-STAT signaling pathway in porcine ocular tissue

    No full text
    BACKGROUND: The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. METHODS: Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3-8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. RESULTS: JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-alpha had an inhibitory effect on porcine ocular cells in proliferation assays. CONCLUSION: Our study demonstrated that some types of human cytokines and interferon activa intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways
    corecore