5 research outputs found

    An adaptive and distributed intrusion detection scheme for cloud computing

    Get PDF
    Cloud computing has enormous potentials but still suffers from numerous security issues. Hence, there is a need to safeguard the cloud resources to ensure the security of clients’ data in the cloud. Existing cloud Intrusion Detection System (IDS) suffers from poor detection accuracy due to the dynamic nature of cloud as well as frequent Virtual Machine (VM) migration causing network traffic pattern to undergo changes. This necessitates an adaptive IDS capable of coping with the dynamic network traffic pattern. Therefore, the research developed an adaptive cloud intrusion detection scheme that uses Binary Segmentation change point detection algorithm to track the changes in the normal profile of cloud network traffic and updates the IDS Reference Model when change is detected. Besides, the research addressed the issue of poor detection accuracy due to insignificant features and coordinated attacks such as Distributed Denial of Service (DDoS). The insignificant feature was addressed using feature selection while coordinated attack was addressed using distributed IDS. Ant Colony Optimization and correlation based feature selection were used for feature selection. Meanwhile, distributed Stochastic Gradient Decent and Support Vector Machine (SGD-SVM) were used for the distributed IDS. The distributed IDS comprised detection units and aggregation unit. The detection units detected the attacks using distributed SGD-SVM to create Local Reference Model (LRM) on various computer nodes. Then, the LRM was sent to aggregation units to create a Global Reference Model. This Adaptive and Distributed scheme was evaluated using two datasets: a simulated datasets collected using Virtual Machine Ware (VMWare) hypervisor and Network Security Laboratory-Knowledge Discovery Database (NSLKDD) benchmark intrusion detection datasets. To ensure that the scheme can cope with the dynamic nature of VM migration in cloud, performance evaluation was performed before and during the VM migration scenario. The evaluation results of the adaptive and distributed scheme on simulated datasets showed that before VM migration, an overall classification accuracy of 99.4% was achieved by the scheme while a related scheme achieved an accuracy of 83.4%. During VM migration scenario, classification accuracy of 99.1% was achieved by the scheme while the related scheme achieved an accuracy of 85%. The scheme achieved an accuracy of 99.6% when it was applied to NSL-KDD dataset while the related scheme achieved an accuracy of 83%. The performance comparisons with a related scheme showed that the developed adaptive and distributed scheme achieved superior performance

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    An adaptive intrusion detection scheme for cloud computing

    No full text
    To provide dynamic resource management, live virtual machine migration is used to move a virtual machine from one host to another. However, virtual machine migration poses challenges to cloud intrusion detection systems because movement of VMs from one host to another makes it difficult to create a consistent normal profile for anomaly detection. Hence, there is a need to provide an adaptive anomaly detection system capable of adapting to changes that occur in the cloud data during VM migration. To achieve this, the authors proposed a scheme for adaptive IDS for Cloud computing. The proposed adaptive scheme is comprised of four components: an ant colony optimization-based feature selection component, a statistical time series change point detection component, adaptive classification, and model update component, and a detection component. The proposed adaptive scheme was evaluated using simulated datasets collected from vSphere and performance comparison shows improved performance over existing techniques

    A distributed intrusion detection scheme for cloud computing

    No full text
    Intrusion detection systems (IDS) is an important security measure used to secure cloud resources, however, IDS often suffer from poor detection accuracy due to coordinated attacks such as a DDoS. Various research on distributed IDSs have been proposed to detect DDoS however, the limitations of these works the lack of technique to determine an appropriate period to share attack information among nodes in the distributed IDS. Therefore, this article proposes a distributed IDS that uses a binary segmentation change point detection algorithm to address the appropriate period to send attack information to nodes in distributed IDS and using parallel Stochastic Gradient Descent with Support Vector Machine (SGD-SVM) to achieve the distributed detection. The result of the proposed scheme was implemented in Apache Spark using NSL-KDD benchmark intrusion detection dataset. Experimental results show that the proposed distributed intrusion detection scheme outperforms existing distributed IDS for cloud computing

    Machine Learning Approaches for Prediction of the Compressive Strength of Alkali Activated Termite Mound Soil

    No full text
    Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE)
    corecore